Analytical Mechanics is the investigation of motion with the rigorous tools of mathematics. Rooted in the works of Lagrange, Euler, Poincare (to mention just a few), it is a very classical subject with fascinating developments and still rich of open problems. It addresses such fundamental questions as: Is the solar system stable? Is there a unifying 'economy' principle in mechanics? How can a point mass be described as a 'wave'? And has remarkable applications to many branches of physics (Astronomy, Statistical mechanics, Quantum Mechanics). This book was written to fill a gap between...
Analytical Mechanics is the investigation of motion with the rigorous tools of mathematics. Rooted in the works of Lagrange, Euler, Poincare (to menti...
The counter-intuitive aspects of quantum physics have been for long illustrated by thought experiments, from Einstein's photon box to Schrodinger's cat. These experiments have now become real, with single particles--electrons, atoms or photons--directly unveiling the weird features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions...
The counter-intuitive aspects of quantum physics have been for long illustrated by thought experiments, from Einstein's photon box to Schrodinger's ca...
Starting from first principles, this book introduces the closely related phenomena of Bose condensation and Cooper pairing, in which a very large number of single particles or pairs of particles are forced to behave in exactly the same way, and explores their consequences in condensed matter systems. Eschewing advanced formal methods, the author uses simple concepts and arguments to account for the various qualitatively new phenomena which occur in Bose-condensed and Cooper-paired systems, including but not limited to the spectacular macroscopic phenomena of superconductivity and...
Starting from first principles, this book introduces the closely related phenomena of Bose condensation and Cooper pairing, in which a very large numb...
For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalization, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and electrons in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods in condensed...
For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty yea...
This book is an introduction to the techniques of many-body quantum theory with a large number of applications to condensed matter physics. The basic idea of the book is to provide a self-contained formulation of the theoretical framework without losing mathematical rigor, while at the same time providing physical motivation and examples. The examples are taken from applications in electron systems and transport theory. On the formal side, the book covers an introduction to second quantization, many-body Green's function, finite temperature Feynman diagrams and bosonization. The...
This book is an introduction to the techniques of many-body quantum theory with a large number of applications to condensed matter physics. The basic ...
The main goal of this book is to familiarize the reader with a tool, the path integral, that not only offers an alternative point of view on quantum mechanics, but more importantly, under a generalized form, has also become the key to a deeper understanding of quantum field theory and its applications, extending from particle physics to phase transitions or properties of quantum gases. Path integrals are mathematical objects that can be considered as generalizations to an infinite number of variables, represented by paths, of usual integrals. They share the algebraic properties of usual...
The main goal of this book is to familiarize the reader with a tool, the path integral, that not only offers an alternative point of view on quantum m...
For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalization, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and electrons in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods in condensed...
For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty yea...
This work tries to provide an elementary introduction to the notions of continuum limit and universality in statistical systems with a large number of degrees of freedom. The existence of a continuum limit requires the appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature. In this context, we will emphasize the role of gaussian distributions and their relations with the mean field approximation and Landau's theory of critical phenomena. We will show that quasi-gaussian or mean-field approximations cannot...
This work tries to provide an elementary introduction to the notions of continuum limit and universality in statistical systems with a large number of...
The main goal of this work is to familiarize the reader with a tool, the path integral, that offers an alternative point of view on quantum mechanics, but more important, under a generalized form, has become the key to a deeper understanding of quantum field theory and its applications, which extend from particle physics to phase transitions or properties of quantum gases. Path integrals are mathematical objects that can be considered as generalizations to an infinite number of variables, represented by paths, of usual integrals. They share the algebraic properties of usual integrals, but...
The main goal of this work is to familiarize the reader with a tool, the path integral, that offers an alternative point of view on quantum mechanics,...
Kinetic Theory of Granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics - a theory which has mainly evolved over the last decade. The book is aimed at readers from the advanced undergraduate level upwards and leads on to the present state of research. Throughout, special emphasis is put on a microscopically consistent description of pairwise particle collisions which leads to an impact-velocity-dependent coefficient of restitution. The description of the many-particle system, based on the Boltzmann equation, starts with the derivation of the...
Kinetic Theory of Granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics - a theory which has mainly evo...