Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob- lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre- senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and...
Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contras...
The present volume contains the proceedings of the workshop on "Minimax Theory and Applications" that was held during the week 30 September - 6 October 1996 at the "G. Stampacchia" International School of Mathematics of the "E. Majorana" Centre for Scientific Cul- ture in Erice (Italy) . The main theme of the workshop was minimax theory in its most classical meaning. That is to say, given a real-valued function f on a product space X x Y, one tries to find conditions that ensure the validity of the equality sup inf f(x, y) = inf sup f(x, y). yEY xEX xEX yEY This is not an appropriate place to...
The present volume contains the proceedings of the workshop on "Minimax Theory and Applications" that was held during the week 30 September - 6 Octobe...
In the early fifties, applied mathematicians, engineers and economists started to pay c10se attention to the optimization problems in which another (lower-Ievel) optimization problem arises as a side constraint. One of the motivating factors was the concept of the Stackelberg solution in game theory, together with its economic applications. Other problems have been encountered in the seventies in natural sciences and engineering. Many of them are of practical importance and have been extensively studied, mainly from the theoretical point of view. Later, applications to mechanics and network...
In the early fifties, applied mathematicians, engineers and economists started to pay c10se attention to the optimization problems in which another (l...
The use of optimization techniques has become integral to the design and analysis of most industrial and socio-economic systems. Great strides have been made recently in the solution of large-scale problems arising in such areas as production planning, airline scheduling, government regulation, and engineering design, to name a few. Analysts have found, however, that standard mathematical programming models are often inadequate in these situations because more than a single objective function and a single decision maker are involved. Multiple objective programming deals with the extension of...
The use of optimization techniques has become integral to the design and analysis of most industrial and socio-economic systems. Great strides have be...
This book deals with the theory and applications of the Reformulation- Linearization/Convexification Technique (RL T) for solving nonconvex optimization problems. A unified treatment of discrete and continuous nonconvex programming problems is presented using this approach. In essence, the bridge between these two types of nonconvexities is made via a polynomial representation of discrete constraints. For example, the binariness on a 0-1 variable x . can be equivalently J expressed as the polynomial constraint x . (1-x . ) = 0. The motivation for this book is J J the role of tight...
This book deals with the theory and applications of the Reformulation- Linearization/Convexification Technique (RL T) for solving nonconvex optimizati...
An understanding of emergent computation requires a profound revision of the most fundamental ideas. A noticeable attempt of such a rethinking is a world view in which natural systems are seen not as separate entities but as integrated parts of a unified whole. The book for the first time presents such a mathematical structure, which remarkably is based on integers as the single concept. As integers are considered to be the most fundamental entities irreducible to something simpler, this makes the mathematical structure a final theory, and thus we do not have to look for its explanation in...
An understanding of emergent computation requires a profound revision of the most fundamental ideas. A noticeable attempt of such a rethinking is a wo...
The vast majority of important applications in science, engineering and applied science are characterized by the existence of multiple minima and maxima, as well as first, second and higher order saddle points. The area of Deterministic Global Optimization introduces theoretical, algorithmic and computational ad- vances that (i) address the computation and characterization of global minima and maxima, (ii) determine valid lower and upper bounds on the global minima and maxima, and (iii) address the enclosure of all solutions of nonlinear con- strained systems of equations. Global optimization...
The vast majority of important applications in science, engineering and applied science are characterized by the existence of multiple minima and maxi...
In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi neering, have shown the need of new mathematical models for study ing the equilibrium of a system. This has led to the formulation of Variational Inequalities (by G. Stampacchia), and to the develop ment of Complementarity Systems (by W.S. Dorn, G.B. Dantzig, R.W. Cottle, O.L. Mangasarian et al.) with important applications in the elasto-plastic field (initiated by G. Maier). The great advan tage of these models is that the equilibrium is not necessarily the...
In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi neering, have shown ...
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical...
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to pro...
Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimization techniques for addressing several computational chemistry and biology problems. A tantalizing problem that cuts across the fields of computational chemistry, biology, medicine, engineering and applied mathematics is how proteins fold. Global and local optimization provide a systematic framework of conformational searches for the prediction of three-dimensional protein structures that represent the global minimum free energy, as well as...
Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimizati...