Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called "Quantum Materials."
Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assemb...
Progress in nanoscience is becoming increasingly dependent on simulation and modelling. This is due to a combination of three factors: the reduced size of nano-objects, the increasing power of computers, and the development of new theoretical methods. This book represents the first attempt to provide the theoretical background needed by physicists, engineers and students to simulate nanodevices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab-initio methods, and their application to experiments....
Progress in nanoscience is becoming increasingly dependent on simulation and modelling. This is due to a combination of three factors: the reduced ...
The past few decades of research and development in solid-state semicon- ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan- largely been ignored (except in as much as...
The past few decades of research and development in solid-state semicon- ductor physics and electronics have witnessed a rapid growth in the drive to ...
Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in...
Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent y...
Accurate positioning of self-organized nanostructures on a substrate surface can be regarded as the Achilles' heel of nanotechnology. This perception also applies to self-assembled semiconductor quantum dots. This book describes the full range of possible strategies to laterally align self-assembled quantum dots on a substrate surface, starting from pure self-ordering mechanisms and culminating with forced alignment by lithographic positioning. The text addresses both short- and long-range ordering phenomena and paves the way for the future high integration of single quantum dot devices on...
Accurate positioning of self-organized nanostructures on a substrate surface can be regarded as the Achilles' heel of nanotechnology. This percepti...
Ever since the genesis of life, and throughout the course its further evolution, Nature has constantly been called upon to act as an engineer in solving technical problems. Organisms have evolved a variety of well-defined shapes and structures. Although often intricate and fragile, they can nonetheless deal with extreme mechanical loads. Some organisms live attached to a substrate; others can also move, fly, swim and dive. These abilities and many more are based on a variety of ingenious structural solutions. Understanding these is of major scientific interest, since it can give insights into...
Ever since the genesis of life, and throughout the course its further evolution, Nature has constantly been called upon to act as an engineer in solvi...
The ability to accurately and reproducibly measure the properties and perf- mance characteristics of nanoscale materials, devices, and systems is a critical enabler for progress in fundamental nanoscience, in the design of new nanoma- rials, and ultimately in manufacturing new nanoscale products 1]. This quotation from the US National Nanotechnology Initiative emphasizes the need for measu- ment tools in emerging nanomaterial applications, a eld predicted to generate a multibillion-dollar market within 10 years. One speci c measurement need is for nanomechanical information knowledge on the...
The ability to accurately and reproducibly measure the properties and perf- mance characteristics of nanoscale materials, devices, and systems is a cr...
The success of the Springer Series Applied Scanning Probe Methods I-VII and the rapidly expanding activities in scanning probe development and applications worldwide made it a natural step to collect further speci c results in the elds of development of scanning probe microscopy techniques (Vol. VIII), characterization (Vol. IX), and biomimetics and industrial applications (Vol. X). These three volumes complement the previous set of volumes under the subject topics and give insight into the recent work of leading specialists in their respective elds. Following the tradition of the series, the...
The success of the Springer Series Applied Scanning Probe Methods I-VII and the rapidly expanding activities in scanning probe development and applica...
The success of the Springer Series Applied Scanning Probe Methods I-VII and the rapidly expanding activities in scanning probe development and applications worldwide made it a natural step to collect further speci c results in the elds of development of scanning probe microscopy techniques (Vol. VIII), characterization (Vol. IX), and biomimetics and industrial applications (Vol. X). These three volumes complement the previous set of volumes under the subject topics and give insight into the recent work of leading specialists in their respective elds. Following the tradition of the series, the...
The success of the Springer Series Applied Scanning Probe Methods I-VII and the rapidly expanding activities in scanning probe development and applica...
Charge migration through DNA has been the focus of considerable interest in recent years. This book presents contributions from an international team of researchers active in this field. It contains a wide range of topics that includes the mathematical background of the quantum processes involved, the role of charge transfer in DNA radiation damage, a new approach to DNA sequencing, DNA photonics, and many others.
Charge migration through DNA has been the focus of considerable interest in recent years. This book presents contributions from an international te...