Spaces of holomorphic functions have been a prominent theme in analysis since early in the twentieth century. Of interest to complex analysts, functional analysts, operator theorists, and systems theorists, their study is now flourishing. This volume, an outgrowth of a 1995 program at the Mathematical Sciences Research Institute, contains expository articles by program participants describing the present state of the art. Here researchers and graduate students will encounter Hardy spaces, Bergman spaces, Dirichlet spaces, Hankel and Toeplitz operators, and a sampling of the role these objects...
Spaces of holomorphic functions have been a prominent theme in analysis since early in the twentieth century. Of interest to complex analysts, functio...
K-theory has helped convert the theory of operator algebras from a simple branch of functional analysis to a subject with broad applicability throughout mathematics, especially in geometry and topology, and many mathematicians of diverse backgrounds must learn the essential parts of the theory. This book is the only comprehensive treatment of K-theory for operator algebras, and is intended to help students, non specialists, and specialists learn the subject. This first paperback printing has been revised and expanded and contains an updated reference list. This book develops K-theory, the...
K-theory has helped convert the theory of operator algebras from a simple branch of functional analysis to a subject with broad applicability througho...
Is Nine-Men's Morris, in the hands of perfect players, a win for white or for black--or a draw? Can king, rook, and knight always defeat king and two knights in chess? What can Go players learn from economists? What are nimbers, tinies, switches, minies? This book deals with combinatorial games, that is, games not involving chance or hidden information. Their study is at once old and young: though some games, such as chess, have been analyzed for centuries, the first full analysis of a nontrivial combinatorial game (Nim) only appeared in 1902. This book deals with combinatorial games, that...
Is Nine-Men's Morris, in the hands of perfect players, a win for white or for black--or a draw? Can king, rook, and knight always defeat king and two ...
During the past decade, mathematics education has changed rapidly, giving rise to a polarization of opinions among the community of research mathematicians. What is the appropriate balance among theory, technique, and applications? What is the role of technology? How do we fulfill the needs of students entering other fields? The purpose of this volume, the proceedings of a conference held at the Mathematical Sciences Research Institute in Berkeley in 1996, is to present a serious discussion of these educational issues, with a balanced representation of opposing ideas. Part I deals with...
During the past decade, mathematics education has changed rapidly, giving rise to a polarization of opinions among the community of research mathemati...
Testing matters It can determine kids' and schools' futures. In a conference at the Mathematical Sciences Research Institute, mathematicians, math education researchers, teachers, test developers, and policymakers gathered to work through critical issues related to mathematics assessment. This volume presents the results of the discussions. It highlights the kinds of information that different assessments can offer, including many examples of some of the best mathematics assessments worldwide. A special feature is an interview with a student about his knowledge of fractions and a...
Testing matters It can determine kids' and schools' futures. In a conference at the Mathematical Sciences Research Institute, mathematicians, math ed...
The contributions in this major work focus on a central area of mathematics with strong ties to partial differential equations, algebraic geometry, number theory, and differential geometry. The 1995-96 MSRI program on Several Complex Variables emphasized these interactions and concentrated on current developments and problems that capitalize on this interplay of ideas and techniques. This collection provides a remarkably complete picture of the status of research in these overlapping areas and a basis for significant continued contributions from researchers. Several of the articles are...
The contributions in this major work focus on a central area of mathematics with strong ties to partial differential equations, algebraic geometry, nu...
During 1996-97 MSRI held a full academic-year program on combinatorics, with special emphasis on its connections to other branches of mathematics, such as algebraic geometry, topology, commutative algebra, representation theory, and convex geometry. The rich combinatorial problems arising from the study of various algebraic structures are the subject of this book, which features work done or presented at the program's seminars. The text contains contributions on matroid bundles, combinatorial representation theory, lattice points in polyhedra, bilinear forms, combinatorial differential...
During 1996-97 MSRI held a full academic-year program on combinatorics, with special emphasis on its connections to other branches of mathematics, suc...
Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at...
Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework ...
Although topology was recognized by Gauss and Maxwell to play a pivotal role in the formulation of electromagnetic boundary value problems, it is a largely unexploited tool for field computation. The development of algebraic topology since Maxwell provides a framework for linking data structures, algorithms, and computation to topological aspects of three-dimensional electromagnetic boundary value problems. This book attempts to expose the link between Maxwell and a modern approach to algorithms. The first chapters lay out the relevant facts about homology and cohomology, stressing their...
Although topology was recognized by Gauss and Maxwell to play a pivotal role in the formulation of electromagnetic boundary value problems, it is a la...
This book is a state-of-the-art look at combinatorial games, that is, games not involving chance or hidden information. It contains a fascinating collection of articles by some of the top names in the field, such as Elwyn Berlekamp and John Conway, plus other researchers in mathematics and computer science, together with some top game players. The articles run the gamut from new theoretical approaches (infinite games, generalizations of game values, 2-player cellular automata, Alpha-Beta pruning under partial orders) to the very latest in some of the hottest games (Amazons, Chomp,...
This book is a state-of-the-art look at combinatorial games, that is, games not involving chance or hidden information. It contains a fascinating coll...