A Course in the Theory of Groups is a comprehensive introduction to the theory of groups - finite and infinite, commutative and non-commutative. Presupposing only a basic knowledge of modern algebra, it introduces the reader to the different branches of group theory and to its principal accomplishments. While stressing the unity of group theory, the book also draws attention to connections with other areas of algebra such as ring theory and homological algebra. This new edition has been updated at various points, some proofs have been improved, and lastly about thirty additional...
A Course in the Theory of Groups is a comprehensive introduction to the theory of groups - finite and infinite, commutative and non-commutative...
Although the calculus of variations has ancient origins in questions of Ar- istotle and Zenodoros, its mathematical principles first emerged in the post- calculus investigations of Newton, the Bernoullis, Euler, and Lagrange. Its results now supply fundamental tools of exploration to both mathematicians and those in the applied sciences. (Indeed, the macroscopic statements ob- tained through variational principles may provide the only valid mathemati- cal formulations of many physical laws. ) Because of its classical origins, variational calculus retains the spirit of natural philosophy...
Although the calculus of variations has ancient origins in questions of Ar- istotle and Zenodoros, its mathematical principles first emerged in the po...
This is a textbook suitable for a year-long course in analysis at the ad- vanced undergraduate or possibly beginning-graduate level. It is intended for students with a strong background in calculus and linear algebra, and a strong motivation to learn mathematics for its own sake. At this stage of their education, such students are generally given a course in abstract algebra, and a course in analysis, which give the fundamentals of these two areas, as mathematicians today conceive them. Mathematics is now a subject splintered into many specialties and sub- specialties, but most of it can be...
This is a textbook suitable for a year-long course in analysis at the ad- vanced undergraduate or possibly beginning-graduate level. It is intended fo...
This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with a review of probablity theory as applied to finite sample spaces and a general introduction to the nature and types of codes. The two subsequent chapters discuss information theory: efficiency of codes, the entropy of information sources, and Shannon's Noiseless Coding Theorem. The remaining three chapters deal with coding theory: communication channels, decoding in the presence of errors, the general theory of linear codes, and such specific...
This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with ...
Many important reference works in Banach space theory have appeared since Banach's "Theorie des Operations Lineaires," the impetus for the development of much of the modern theory in this field. While these works are classical starting points for the graduate student wishing to do research in Banach space theory, they can be formidable reading for the student who has just completed a course in measure theory and integration that introduces the L_p spaces and would like to know more about Banach spaces in general. The purpose of this book is to bridge this gap and provide an introduction to...
Many important reference works in Banach space theory have appeared since Banach's "Theorie des Operations Lineaires," the impetus for the development...
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting...
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own...
Spaces of holomorphic functions have been a prominent theme in analysis since early in the twentieth century. Of interest to complex analysts, functional analysts, operator theorists, and systems theorists, their study is now flourishing. This volume, an outgrowth of a 1995 program at the Mathematical Sciences Research Institute, contains expository articles by program participants describing the present state of the art. Here researchers and graduate students will encounter Hardy spaces, Bergman spaces, Dirichlet spaces, Hankel and Toeplitz operators, and a sampling of the role these objects...
Spaces of holomorphic functions have been a prominent theme in analysis since early in the twentieth century. Of interest to complex analysts, functio...
Spaces of holomorphic functions have been a prominent theme in analysis since early in the twentieth century. Of interest to complex analysts, functional analysts, operator theorists, and systems theorists, their study is now flourishing. This volume, an outgrowth of a 1995 program at the Mathematical Sciences Research Institute, contains expository articles by program participants describing the present state of the art. Here researchers and graduate students will encounter Hardy spaces, Bergman spaces, Dirichlet spaces, Hankel and Toeplitz operators, and a sampling of the role these objects...
Spaces of holomorphic functions have been a prominent theme in analysis since early in the twentieth century. Of interest to complex analysts, functio...
Paul Richard Halmos, who lived a life of unbounded devotion to mathematics and to the mathematical community, died at the age of 90 on October 2, 2006. This volume is a memorial to Paul by operator theorists he inspired. Paul'sinitial research, beginning with his 1938Ph.D. thesis at the University of Illinois under Joseph Doob, was in probability, ergodic theory, and measure theory. A shift occurred in the 1950s when Paul's interest in foundations led him to invent a subject he termed algebraic logic, resulting in a succession of papers on that subject appearing between 1954 and 1961, and the...
Paul Richard Halmos, who lived a life of unbounded devotion to mathematics and to the mathematical community, died at the age of 90 on October 2, 2006...
College Algebra, First Edition will appeal to those who want to give important topics more in-depth, higher-level coverage. This text offers streamlined approach accompanied with accessible definitions across all chapters to allow for an easy-to-understand read. College Algebra contains prose that is precise, accurate, and easy to read, with straightforward definitions of even the topics that are typically most difficult for students.
College Algebra, First Edition will appeal to those who want to give important topics more in-depth, higher-level coverage. This text of...