This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective. In the context of studying many-electron systems Computer Science, Chemistry, Mathematics and Physics are all intimately interconnected. However, beyond a handful of communities working at the interface between these disciplines, there is still a marked separation of subjects. This book seeks to offer a common platform for possible exchanges between the various fields and to introduce the reader to perspectives for potential further...
This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspec...
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research.
This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed.
Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for...
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject o...
Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments. However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation...
Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of fol...
This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures
The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory,...
This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years....
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of...
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of p...
This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields.
The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator...
This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetrie...
This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken)...
This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical struc...
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation...
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in ...
This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective.
This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspec...
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research.
This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed.
Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for...
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject o...