For propositional logic it can be decided whether a formula has a deduction from a finite set of other formulas. This volume begins with a method to decide this for the quantified formulas of those fragments of arithmetic which express the properties of order-plus-successor and of order-plus-addition (Pressburger arithmetic). It makes use of an algorithm eliminating quantifiers which, in turn, is also applied to obtain consistency proofs for these fragments.
For propositional logic it can be decided whether a formula has a deduction from a finite set of other formulas. This volume begins with a method to d...
In this volume, logic starts from the observation that in everyday arguments, as brought forward by say a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. The book concludes with the algorithms producing the results of Gentzen's midsequent theorem and Herbrand's theorem for prenex formulas.
In this volume, logic starts from the observation that in everyday arguments, as brought forward by say a lawyer, statements are transformed linguisti...