This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow...
This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In pa...
Starting with the basic notions and facts of the mathematical theory of waves illustrated by numerous examples, exercises, and methods of solving typical problems Chapters 1 & 2 show e.g. how to recognize the hyperbolicity property, find characteristics, Riemann invariants and conservation laws for quasilinear systems of equations, construct and analyze solutions with weak or strong discontinuities, and how to investigate equations with dispersion and to construct travelling wave solutions for models reducible to nonlinear evolution equations.
Chapter 3 deals with surface and...
Starting with the basic notions and facts of the mathematical theory of waves illustrated by numerous examples, exercises, and methods of solving t...