A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed.
A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous se...
In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart.
In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion....
The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distributions defined on the same continuous domain. Second, nonlinear underlying domains are considered by proposing novel filters that inherently take the underlying geometry of these domains into account.
The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is consider...
We discuss theory and application of extended object tracking. This task is challenging as sensor noise prevents a correct association of the measurements to their sources on the object, the shape itself might be unknown a priori, and due to occlusion effects, only parts of the object are visible at a given time. We propose an approach to track the parameters of arbitrary objects, which provides new solutions to the above challenges, and marks a significant advance to the state of the art.
We discuss theory and application of extended object tracking. This task is challenging as sensor noise prevents a correct association of the measurem...
The focus of this work is a generic, intraoperative and image-free planning and execution application for arbitrary orthopedic interventions using a novel handheld robotic device and optical see-through glasses (AR). This medical CAD application enables the surgeon to intraoperatively plan the intervention directly on the patient's bone. The glasses and all the other instruments are accurately calibrated using new techniques. Several interventions show the effectiveness of this approach.
The focus of this work is a generic, intraoperative and image-free planning and execution application for arbitrary orthopedic interventions using a n...
Extended object tracking deals with estimating the shape and pose of an object based on noisy point measurements. This task is not straightforward, as we may be faced with scarce low-quality measurements, little a priori information, or we may be unable to observe the entire target. This work aims to address these challenges by incorporating ideas from active contours and exploiting information from negative measurements, which tell us where the target cannot be.
Extended object tracking deals with estimating the shape and pose of an object based on noisy point measurements. This task is not straightforward, as...
In optical belt sorting, accurate predictions of the bulk material particles' motions are required for high-quality results. By implementing a multitarget tracker tailored to the scenario and deriving novel motion models, the predictions are greatly enhanced. The tracker's reliability is improved by also considering the particles' orientations. To this end, new estimators for directional quantities based on orthogonal basis functions are presented and shown to outperform the state of the art.
In optical belt sorting, accurate predictions of the bulk material particles' motions are required for high-quality results. By implementing a multita...