This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ics and chaos as applied to digital communications. At ?rst blush, the term "chaotic communications" seems like an oxymoron; how could something as precise and deterministic as digital communications be chaotic? But as this book will demonstrate, the application of chaos and nonlinear dynamicstocommunicationsprovidesmanypromisingnewdirectionsinareas of coding, nonlinear optical communications, and ultra-wideband commu- cations. The eleven chapters...
This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ic...
This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.
This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion...
Intended for graduate students and researchers in physics, chemistry, biology, and applied mathematics, this book provides an up-to-date introduction to current research in fluctuations in spatially extended systems. It offers a practical introduction to the theory of stochastic partial differential equations and gives an overview of the effects of external noise on dynamical systems with spatial degrees of freedom. The text begins with a general introduction to noise-induced phenomena in dynamical systems followed by an extensive discussion of analytical and numerical tools needed to get...
Intended for graduate students and researchers in physics, chemistry, biology, and applied mathematics, this book provides an up-to-date introduction ...
Based on courses given at the universities of Texas in Austin, and California in San Diego, this book treats an active fields of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; it continues with a detailed discussion of area-preserving maps, integrable...
Based on courses given at the universities of Texas in Austin, and California in San Diego, this book treats an active fields of research that touches...
This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ics and chaos as applied to digital communications. At ?rst blush, the term "chaotic communications" seems like an oxymoron; how could something as precise and deterministic as digital communications be chaotic? But as this book will demonstrate, the application of chaos and nonlinear dynamicstocommunicationsprovidesmanypromisingnewdirectionsinareas of coding, nonlinear optical communications, and ultra-wideband commu- cations. The eleven chapters...
This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ic...
In Chapter One we review the foundations of statistieal physies and frac tal functions. Our purpose is to demonstrate the limitations of Hamilton's equations of motion for providing a dynamical basis for the statistics of complex phenomena. The fractal functions are intended as possible models of certain complex phenomena; physical.systems that have long-time mem ory and/or long-range spatial interactions. Since fractal functions are non differentiable, those phenomena described by such functions do not have dif ferential equations of motion, but may have fractional-differential equations of...
In Chapter One we review the foundations of statistieal physies and frac tal functions. Our purpose is to demonstrate the limitations of Hamilton's eq...
In recent years there has been a growth in interest in studying the heart from the perspective of the physical sciences: mechanics, fluid flow, electromechanics. This volume is the result of a workshop held in July 1989 at the Institute for Nonlinear Sciences at the University of California at San Diego that brought together scientists and clinicians with graduate students and postdoctoral fellows who shared an interest in the heart. The chapters were prepared by the invited speakers as didactic reviews of their subjects but also include the structure, mechanical properties, and function of...
In recent years there has been a growth in interest in studying the heart from the perspective of the physical sciences: mechanics, fluid flow, electr...
The volume that you have before you is the result of a growing realization that fluctuations in nonequilibrium systems playa much more important role than was 1 first believed. It has become clear that in nonequilibrium systems noise plays an active, one might even say a creative, role in processes involving self-organization, pattern formation, and coherence, as well as in biological information processing, energy transduction, and functionality. Now is not the time for a comprehensive summary of these new ideas, and I am certainly not the person to attempt such a thing. Rather, this short...
The volume that you have before you is the result of a growing realization that fluctuations in nonequilibrium systems playa much more important role ...
Intended for graduates and researchers in physics, chemistry, biology, and applied mathematics, this book provides an up-to-date introduction to current research in fluctuations in spatially extended systems. It covers the theory of stochastic partial differential equations and gives an overview of the effects of external noise on dynamical systems with spatial degrees of freedom. Starting with a general introduction to noise-induced phenomena in dynamical systems, the text moves on to an extensive discussion of analytical and numerical tools needed to gain information from stochastic partial...
Intended for graduates and researchers in physics, chemistry, biology, and applied mathematics, this book provides an up-to-date introduction to curre...