This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction.In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on...
This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New g...
Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful introduction to students entering this active and rapidly growing field. The author presents a comprehensive treatment of several aspects of pseudo-Riemannian geometry, including the spectral geometry of the curvature tensor, curvature homogeneity, and Stanilov-Tsankov-Videv theory.
Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature g...
This book contains the first systematic exposition of the global and local theory of dynamics equivariant with respect to a (compact) Lie group. Aside from general genericity and normal form theorems on equivariant bifurcation, it describes many general families of examples of equivariant bifurcation and includes a number of novel geometric techniques, in particular, equivariant transversality. This important book forms a theoretical basis of future work on equivariant reversible and Hamiltonian systems.This book also provides a general and comprehensive introduction to codimension one...
This book contains the first systematic exposition of the global and local theory of dynamics equivariant with respect to a (compact) Lie group. Aside...
The k(GV) conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product GV is bounded above by the order of V. Here V is a finite vector space and G a subgroup of GL(V) of order prime to that of V. It may be regarded as the special case of Brauer's celebrated k(B) problem dealing with p-blocks B of p-solvable groups (p a prime). Whereas Brauer's problem is still open in its generality, the k(GV) problem has recently been solved, completing the work of a series of authors over a period of more than forty years. In this book the...
The k(GV) conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product GV is bounded above by the order o...
This book concerns continuous-time controlled Markov chains, also known as continuous-time Markov decision processes. They form a class of stochastic control problems in which a single decision-maker wishes to optimize a given objective function. This book is also concerned with Markov games, where two decision-makers (or players) try to optimize their own objective function. Both decision-making processes appear in a large number of applications in economics, operations research, engineering, and computer science, among other areas.An extensive, self-contained, up-to-date analysis of basic...
This book concerns continuous-time controlled Markov chains, also known as continuous-time Markov decision processes. They form a class of stochastic ...