Neal Koblitz was a student of Nicholas M. Katz, under whom he received his Ph.D. in mathematics at Princeton in 1974. He spent the year 1974 -75 and the spring semester 1978 in Moscow, where he did research in p -adic analysis and also translated Yu. I. Manin's "Course in Mathematical Logic" (GTM 53). He taught at Harvard from 1975 to 1979, and since 1979 has been at the University of Washington in Seattle. He has published papers in number theory, algebraic geometry, and p-adic analysis, and he is the author of "p-adic Analysis: A Short Course on Recent Work" (Cambridge University Press and...
Neal Koblitz was a student of Nicholas M. Katz, under whom he received his Ph.D. in mathematics at Princeton in 1974. He spent the year 1974 -75 and t...
Chapter 1 introduces some of the terminology and notation used later and indicates prerequisites. Chapter 2 gives a reasonably thorough account of all finite subgroups of the orthogonal groups in two and three dimensions. The presentation is somewhat less formal than in succeeding chapters. For instance, the existence of the icosahedron is accepted as an empirical fact, and no formal proof of existence is included. Throughout most of Chapter 2 we do not distinguish between groups that are "geo- metrically indistinguishable," that is, conjugate in the orthogonal group. Very little of the...
Chapter 1 introduces some of the terminology and notation used later and indicates prerequisites. Chapter 2 gives a reasonably thorough account of all...
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to...
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects i...
This is a systematic exposition of the basic part of the theory of mea- sure and integration. The book is intended to be a usable text for students with no previous knowledge of measure theory or Lebesgue integration, but it is also intended to include the results most com- monly used in functional analysis. Our two intentions are some what conflicting, and we have attempted a resolution as follows. The main body of the text requires only a first course in analysis as background. It is a study of abstract measures and integrals, and comprises a reasonably complete account of Borel measures...
This is a systematic exposition of the basic part of the theory of mea- sure and integration. The book is intended to be a usable text for students wi...
Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek Po], Artin-Hasse A-H] and Vandiver Va]. In the mid 1950's, the theory of cyclotomic fields was...
Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi...
There is a canard that every textbook of algebraic topology either ends with the definition of the Klein bottle or is a personal communication to J. H. C. Whitehead. Of course, this is false, as a glance at the books of Hilton and Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard does reflect some truth. Too often one finds too much generality and too little attention to details. There are two types of obstacle for the student learning algebraic topology. The first is the formidable array of new techniques (e. g., most students know very little homological algebra); the second...
There is a canard that every textbook of algebraic topology either ends with the definition of the Klein bottle or is a personal communication to J. H...
Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two...
Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it ...
"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became...
"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pira...
This is the second volume of a 2-volume textbook* which evolved from a course (Mathematics 160) offered at the California Institute of Technology during the last 25 years. The second volume presupposes a background in number theory com- parable to that provided in the first volume, together with a knowledge of the basic concepts of complex analysis. Most of the present volume is devoted to elliptic functions and modular functions with some of their number-theoretic applications. Among the major topics treated are Rademacher's convergent series for the partition function, Lehner's congruences...
This is the second volume of a 2-volume textbook* which evolved from a course (Mathematics 160) offered at the California Institute of Technology duri...