This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to th...
This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor- phic...
This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of ratio...
Aimed at graduate math students, this classic work is a systematic exposition of general topology and is intended to be a reference and a text. As a reference, it offers a reasonably complete coverage of the area, resulting in a more extended treatment than normally given in a course. As a text, the exposition in the earlier chapters proceeds at a pedestrian pace. A preliminary chapter covers those topics requisite to the main body of work.
Aimed at graduate math students, this classic work is a systematic exposition of general topology and is intended to be a reference and a text. As ...
From the Introduction: "We shall base our discussion on a set-theoretical foundation like that used in developing analysis, or algebra, or topology. We may consider our task as that of giving a mathematical analysis of the basic concepts of logic and mathematics themselves. Thus we treat mathematical and logical practice as given empirical data and attempt to develop a purely mathematical theory of logic abstracted from these data."
There are 31 chapters in 5 parts and approximately 320 exercises marked by difficulty and whether or not they are necessary for further work in the...
From the Introduction: "We shall base our discussion on a set-theoretical foundation like that used in developing analysis, or algebra, or topology...
This book is intended as a text for graduate students and as a reference for workers in probability and statistics. The prerequisite is honest calculus. The material covered in Parts Two to Five inclusive requires about three to four semesters of graduate study. The introductory part may serve as a text for an undergraduate course in elementary probability theory. Numerous historical marks about results, methods, and the evolution of various fields are an intrinsic part of the text. About a third of the second volume is devoted to conditioning and properties of sequences of various types of...
This book is intended as a text for graduate students and as a reference for workers in probability and statistics. The prerequisite is honest calculu...
Ah Love Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied the same objects in many different guises. My first goal thus has been to take three different viewpoints and demonstrate how they offer complementary intuitive insight into the subject. In Part I we begin with a functorial idea, discussing some familiar processes for constructing groups. These turn out to be equivalent to the ring-theoretic objects called Hopf algebras, with which we can then con- struct new examples. Study of their...
Ah Love Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied th...
The goal of this book is to present local class field theory from the cohomo- logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation." The chapters are grouped in "parts." There are three preliminary parts: the first two on the general theory of local fields, the third on group coho- mology....
The goal of this book is to present local class field theory from the cohomo- logical point of view, following the method inaugurated by Hochschild an...
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L- series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have...
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and...
Transformation geometry is a relatively recent expression of the successful venture of bringing together geometry and algebra. The name describes an approach as much as the content. Our subject is Euclidean geometry. Essential to the study of the plane or any mathematical system is an under- standing of the transformations on that system that preserve designated features of the system. Our study of the automorphisms of the plane and of space is based on only the most elementary high-school geometry. In particular, group theory is not a prerequisite here. On the contrary, this modern approach...
Transformation geometry is a relatively recent expression of the successful venture of bringing together geometry and algebra. The name describes an a...
As a second year graduate textbook, Cohomology of Groups introduces students to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology. The basics of the subject are given (along with exercises) before the author discusses more specialized topics.
As a second year graduate textbook, Cohomology of Groups introduces students to cohomology theory (involving a rich interplay between algebra a...