• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Introduction to Affine Group Schemes » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Introduction to Affine Group Schemes

ISBN-13: 9780387904214 / Angielski / Twarda / 1979 / 164 str.

William C. Waterhouse; W. C. Waterhouse
Introduction to Affine Group Schemes William C. Waterhouse W. C. Waterhouse 9780387904214 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Introduction to Affine Group Schemes

ISBN-13: 9780387904214 / Angielski / Twarda / 1979 / 164 str.

William C. Waterhouse; W. C. Waterhouse
cena 342,95 zł
(netto: 326,62 VAT:  5%)

Najniższa cena z 30 dni: 327,68 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Ah Love Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied the same objects in many different guises. My first goal thus has been to take three different viewpoints and demonstrate how they offer complementary intuitive insight into the subject. In Part I we begin with a functorial idea, discussing some familiar processes for constructing groups. These turn out to be equivalent to the ring-theoretic objects called Hopf algebras, with which we can then con- struct new examples. Study of their representations shows that they are closely related to groups of matrices, and closed sets in matrix space give us a geometric picture of some of the objects involved. This interplay of methods continues as we turn to specific results. In Part II, a geometric idea (connectedness) and one from classical matrix theory (Jordan decomposition) blend with the study of separable algebras. In Part III, a notion of differential prompted by the theory of Lie groups is used to prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic work on faithful flatness in Part IV turns out to give the true explanation for the behavior of quotient group functors. Finally, the material is connected with other parts of algebra in Part V, which shows how twisted forms of any algebraic structure are governed by its automorphism group scheme.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Grupy i teoria grup
Mathematics > Algebra - General
Mathematics > Algebra - Abstrakcyjna
Wydawca:
Springer
Seria wydawnicza:
Graduate Texts in Mathematics
Język:
Angielski
ISBN-13:
9780387904214
Rok wydania:
1979
Wydanie:
1979
Numer serii:
000009678
Ilość stron:
164
Waga:
0.96 kg
Wymiary:
23.4 x 15.6
Oprawa:
Twarda
Wolumenów:
01

I The Basic Subject Matter.- 1 Affine Group Schemes.- 1.1 What We Are Talking About.- 1.2 Representable Functors.- 1.3 Natural Maps and Yoneda’s Lemma.- 1.4 Hopf Algebras.- 1.5 Translating from Groups to Algebras.- 1.6 Base Change.- 2 Affine Group Schemes: Examples.- 2.1 Closed Subgroups and Homomorphisms.- 2.2 Diagonalizable Group Schemes.- 2.3 Finite Constant Groups.- 2.4 Cartier Duals.- 3 Representations.- 3.1 Actions and Linear Representations.- 3.2 Comodules.- 3.3 Finiteness Theorems.- 3.4 Realization as Matrix Groups.- 3.5 Construction of All Representations.- 4 Algebraic Matrix Groups.- 4.1 Closed Sets in kn.- 4.2 Algebraic Matrix Groups.- 4.3 Matrix Groups and Their Closures.- 4.4 From Closed Sets to Functors.- 4.5 Rings of Functions.- 4.6 Diagonalizability.- II Decomposition Theorems.- 5 Irreducible and Connected Components.- 5.1 Irreducible Components in kn.- 5.2 Connected Components of Algcbraic Matrix Groups.- 5.3 Components That Coalesce.- 5.4 Spec A.- 5.5 The Algebraic Meaning of Connectedness.- 5 6 Vista: Schemes.- 6 Connected Components and Separable Algebras.- 6.1 Components That Decompose.- 6.2 Separable Algebras.- 6.3 Classification of Separable Algebras.- 6.4 Etale Group Schemes 49 6 5 Separable Subalgcbras.- 6.5 Separable Subalgcbras.- 6.6 Connected Group Schemes.- 6.7 Connected Components of Group Schemes.- 6.8 Finite Groups over Perfect Fields.- 7 Groups of Multiplicative Type.- 7.1 Separable Matrices.- 7.2 Groups of Multiplicative Type.- 7.3 Character Groups.- 7.4 Anisotropic and Split Tori.- 7.5 Examples of Tori.- 7.6 Some Automorphism Group Schcmes.- 7.7 A Rigidity Theorem.- 8 Unipotent Groups.- 8.1 Unipotent Matrices.- 8 2 The Kolchin Fixed Point Theorem.- 8.3 Unipotent Group Schemes.- 8.4 Endomorphisms of Ga..- 8.5 Finite Unipotent Groups.- 9 Jordan Decomposition.- 9.1 Jordan Decomposition of a Matrix.- 9.2 Decomposition in Algebraic Matrix Groups.- 9.3 Decomposition of Abelian Algebraic Matrix Groups.- 9.4 Irreducible Representations of Abelian Group Schemes.- 9.5 Decomposition of Abelian Group Schemes.- 10 Nilpotent and Solvable Groups.- 10.1 Derived Subgroups.- 10.2 The Lie-Kolchin Triangularization Theorem.- 10.3 The Unipotent Subgroup.- 10.4 Decomposition of Nilpotent Groups.- 10.5 Vista: Borel Subgroups.- 10.6 Vista: Differential Algebra.- III The Infinitesimal Theory.- 11 Differentials.- 11.1 Derivations and Differentials.- 11.2 Simple Properties of Differentials.- 11.3 Differentials of Hopf Algebras.- 11.4 No Nilpotents in Characteristic Zero.- 11.5 Differentials of Field Extensions.- 11.6 Smooth Group Schemes.- 11.7 Vista: The Algebro-Geomctric Meaning of Smoothness.- 11.8 Vista: Formal Groups.- 12 Lie Algebras.- 12.1 Invariant Operators and Lie Algebras.- 12.2 Computation or Lie Algebras.- 12.3 Examples.- 12.4 Subgroups and Invariant Subspaces.- 12.5 Vista: Reductive and Semisimple Groups.- IV Faithful Flatness and Quotients.- 13 Faithful Flatness.- 13.1 Definition of Faithful Flatness.- 13.2 Localization Properties.- 13.3 Transition Properties.- 13.4 Generic Faithful Flatness.- 13.5 Proof of the Smoothness Theorem.- 14 Faithful Flatness of Hopf Algebras.- 14.1 Proof in the Smooth Case.- 14.2 Proof with Nilpotents Present.- 14.3 Simple Applications.- 14.4 Structure of Finite Connected Groups.- 15 Quotient Maps.- 15.1 Quotient Maps.- 15.2 Matrix Groups over$$ bar k $$/k.- 15.3 Injections and Closed Kmbeddings.- 15.4 Universal Property of Quotients.- 15.5 Sheaf Property of Quotients.- 15.6 Coverings and Sheaves.- 15.7 Vista: The Etale Topology.- 16 Construction of Quotients.- 16.1 Subgroups as Stabilizers.- 16.2 Difficulties with Coset Spaces.- 16.3 Construction of Quotients.- 16.4 Vista: Invariant Theory.- V Descent Theory.- 17 Descent Theory Formalism.- 17.1 Descent Data.- 17.2 The Descent Theorem.- 17.3 Descent of Algebraic Structure.- 17.4 Example: Zariski Coverings.- 17.5 Construction of Twisted Forms.- 17.6 Twisted Forms and Cohomology.- 17.7 Finite Galois Extensions.- 17.8 Infinite Galois Extensions.- 18 Descent Theory Computations.- 18.1 A Cohomology Exact Sequence.- 18.2 Sample Computations.- 18.3 Principal Homogeneous Spaces.- 18.4 Principal Homogeneous Spaces and Cohomology.- 18.5 Existence of Separable Splitting Fields.- 18.6 Example: Central Simple Algebras.- 18.7 Example: Quadratic Forms and the Arf Invariant.- 18.8 Vanishing Cohomology over Finite Fields.- Appendix: Subsidiary Information.- A.1 Directed Sets and Limits.- A.2 Exterior Powers.- A.3 Localization. Primes, and Nilpotents.- A.4 Noetherian Rings.- A.5 The Hilbert Basis Theorem.- A.6 The Krull Intersection Theorem.- A.7 The Nocthcr Normalization Lemma.- A.8 The Hilbert Nullstellensatz.- A.9 Separably Generated Fields.- A.10 Rudimentary Topological Terminology.- Further Reading.- Index of Symbols.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia