The US Antarctic meteorite collection exists due to a cooperative program involving the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the Smithsonian Institution. Since 1976, meteorites have been collected by a NSF-funded field team, shipped for curation, characterization, distribution, and storage at NASA, and classified and stored for long term at the Smithsonian. It is the largest collection in the world with many significant samples including lunar, martian, many interesting chondrites and achondrites, and even several unusual...
The US Antarctic meteorite collection exists due to a cooperative program involving the National Science Foundation (NSF), the National Aeronautics...
Surface, intermediate, and deep-water processes and their interaction in time and space drive the major ocean circulation of the Mediterranean Sea. All major forcing mechanisms, such as surface wind forcing, buoyancy fluxes, lateral mass exchange, and deep convection determining the global oceanic circulation are present in this body of water. Deep and intermediate water masses are formed in different areas of the ocean layers and they drive the Mediterranean thermohaline cell, which further shows important analogies with the global ocean conveyor belt. The Mediterranean Sea: Temporal...
Surface, intermediate, and deep-water processes and their interaction in time and space drive the major ocean circulation of the Mediterranean Sea....
All magnetized planets in our solar system (Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune) interact strongly with the solar wind and possess well developed magnetotails. It is not only the strongly magnetized planets that have magnetotails. Mars and Venus have no global intrinsic magnetic field, yet they possess induced magnetotails. Comets have magnetotails that are formed by the draping of the interplanetary magnetic field. In the case of planetary satellites (moons), the magnetotail refers to the wake region behind the satellite in the flow of either the solar wind or the...
All magnetized planets in our solar system (Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune) interact strongly with the solar wind and possess...
Hawaiian Volcanoes, From Source to Surface is the outcome of an AGU Chapman Conference held on the Island of Hawai'i in August 2012. As such, this monograph contains a diversity of research results that highlight the current understanding of how Hawaiian volcanoes work and point out fundamental questions requiring additional exploration.
Volume highlights include:
Studies that span a range of depths within Earth, from the deep mantle to the atmosphere
Methods that cross the disciplines of geochemistry, geology, and geophysics to address issues of...
Hawaiian Volcanoes, From Source to Surface is the outcome of an AGU Chapman Conference held on the Island of Hawai'i in August 2012. As such...
The Early Earth: Accretion and Differentiation provides a multidisciplinary overview of the state of the art in understanding the formation and primordial evolution of the Earth. The fundamental structure of the Earth as we know it today was inherited from the initial conditions 4.56 billion years ago as a consequence of planetesimal accretion, large impacts among planetary objects, and planetary-scale differentiation. The evolution of the Earth from a molten ball of metal and magma to the tectonically active, dynamic, habitable planet that we know today is unique among the...
The Early Earth: Accretion and Differentiation provides a multidisciplinary overview of the state of the art in understanding the formation ...
This monograph is the outcome of an American Geophysical Union Chapman Conference on longitude and hemispheric dependence of ionospheric space weather, including the impact of waves propagating from the lower atmosphere. The Chapman Conference was held in Africa as a means of focusing attention on an extensive geographic region where observations are critically needed to address some of the fundamental questions of the physical processes driving the ionosphere locally and globally. The compilation of papers from the conference describes the physics of this system and the mechanisms that...
This monograph is the outcome of an American Geophysical Union Chapman Conference on longitude and hemispheric dependence of ionospheric space weat...
Reliable and detailed information about the Earth's subsurface is of crucial importance throughout the geosciences. Quantitative integration of all available geophysical and geological data helps to make Earth models more robust and reliable. The aim of this book is to summarize and synthesize the growing literature on combining various types of geophysical and other geoscientific data. The approaches that have been developed to date encompass joint inversion, cooperative inversion, and statistical post-inversion analysis methods, each with different benefits and assumptions.
...
Reliable and detailed information about the Earth's subsurface is of crucial importance throughout the geosciences. Quantitative integration of all...
Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncertainties to inform modeling efforts. In this monograph we provide a broad, cross-disciplinary overview of issues relating to uncertainties faced in natural hazard and risk assessment. We introduce some basic tenets of uncertainty analysis, discuss issues related to communication and decision support, and offer numerous examples of analyses and modeling approaches that vary by context and scope. Contributors include scientists from across the...
Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncer...
The Terrestrial Water Cycle: Natural and Human-Induced Changes is a comprehensive volume that investigates the changes in the terrestrial water cycle and the natural and anthropogenic factors that cause these changes. This volume brings together recent progress and achievements in large-scale hydrological observations and numerical simulations, specifically in areas such as in situ measurement network, satellite remote sensing and hydrological modeling. Our goal is to extend and deepen our understanding of the changes in the terrestrial water cycle and to shed light on the...
The Terrestrial Water Cycle: Natural and Human-Induced Changes is a comprehensive volume that investigates the changes in the terrestrial wa...
The aurora is the most visible manifestation of the connection of the Earth to the space environment and has inspired awe, curiosity, and scientific inquiry for centuries. Recent advances in observing techniques and modeling and theoretical work have revealed new auroral phenomena, provided a better understanding of auroral dynamics, and have led to an enhanced capability for auroral forecasts.
This monograph features discussions of:
New auroral phenomena due to the ring current ion and polar rain electron precipitation
Various auroral forms and hemispheric...
The aurora is the most visible manifestation of the connection of the Earth to the space environment and has inspired awe, curiosity, and scientifi...