Three years have passed since the publication of the Russian edition of this book, during which time the method described has found new applications. In 26], the author has introduced the concept of the periodic product of two groups. For any two groups G and G without elements of order 2 and for any 1 2 odd n 665, a group G @ Gmay be constructed which possesses several in 1 2 teresting properties. In G @ G there are subgroups 6 and 6 isomorphic to 1 2 1 2 G and G respectively, such that 6 and 6 generate G @ G and intersect 1 2 1 2 1 2 in the identity. This operation "@" is commutative,...
Three years have passed since the publication of the Russian edition of this book, during which time the method described has found new applications. ...
The subject. The phrase "integral operator" (like some other mathematically informal phrases, such as "effective procedure" and "geometric construction") is sometimes defined and sometimes not. When it is defined, the definition is likely to vary from author to author. While the definition almost always involves an integral, most of its other features can vary quite considerably. Superimposed limiting operations may enter (such as L2 limits in the theory of Fourier transforms and principal values in the theory of singular integrals), IJ' spaces and abstract Banach spaces may intervene, a...
The subject. The phrase "integral operator" (like some other mathematically informal phrases, such as "effective procedure" and "geometric constructio...
Whoever you are How can I but offer you divine leaves . . . ? Walt Whitman The object of study in modern differential geometry is a manifold with a differ ential structure, and usually some additional structure as well. Thus, one is given a topological space M and a family of homeomorphisms, called coordinate sys tems, between open subsets of the space and open subsets of a real vector space V. It is supposed that where two domains overlap, the images are related by a diffeomorphism, called a coordinate transformation, between open subsets of V. M has associated with it a tangent bundle,...
Whoever you are How can I but offer you divine leaves . . . ? Walt Whitman The object of study in modern differential geometry is a manifold with a d...
In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of...
In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from w...
The applications of ergodic theory to metric number theory are well known; part of the latter theory turns out to be essentially a special case of general ergodic theorems. In the present book other applications of ergodic concepts are presented. Constructing "flows" of integral points on certain algebraic manifolds given by systems of integral polynomials, we are able to prove individual ergodic theorems and mixing theorems in certain cases. These theorems permit asymptotic calculations of the distributions of integral points on such manifolds, and we arrive at results inaccessible up to now...
The applications of ergodic theory to metric number theory are well known; part of the latter theory turns out to be essentially a special case of gen...
Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in "analytic" or "cut-free" methods. We use the term "analytic" to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as "analysing" the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in ...
Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an e...
A synthetic approach to intrinsic differential geometry in the large and its connections with the foundations of geometry was presented in "The Geometry of Geodesics" (1955, quoted as G). It is the purpose of the present report to bring this theory up to date. Many of the later ip.vestigations were stimulated by problems posed in G, others concern newtopics. Naturally references to G are frequent. However, large parts, in particular Chapters I and III as weIl as several individual seetions, use only the basic definitions. These are repeated here, sometimes in a slightly different form, so as...
A synthetic approach to intrinsic differential geometry in the large and its connections with the foundations of geometry was presented in "The Geomet...
There are two main purposes for the wntmg of this monograph on factorial rings and the associated theory of the divisor class group of a Krull domain. One is to collect the material which has been published on the subject since Samuel's treatises from the early 1960's. Another is to present some of Claborn's work on Dedekind domains. Since I am not an historian, I tread on thin ice when discussing these matters, but some historical comments are warranted in introducing this material. Krull's work on finite discrete principal orders originating in the early 1930's has had a great influence on...
There are two main purposes for the wntmg of this monograph on factorial rings and the associated theory of the divisor class group of a Krull domain....
The present report on spaces of holomorphic mappings was prepared for the Sexto Coloquio Brasileiro de Matematica (Po~os de Caldas, Minas Gerais, Brazil, July 1967). I also had the oppor- tunity of giving a series of lectures on this material while I was a visiting member at the Center for Theoretical Studies of the University of Miami (Coral Gables, Florida, USA, February 1968). The preparation of this report was sponsored in part by the USA National Science Foundation through a grant to the University of Rochester. I am glad to thank Professors Paul R. Halmos and Peter J. Hilton for...
The present report on spaces of holomorphic mappings was prepared for the Sexto Coloquio Brasileiro de Matematica (Po~os de Caldas, Minas Gerais, Braz...
Varieties of algebras are equationally defined classes of algebras, or "primitive classes" in MAL'CEV'S terminology. They made their first explicit appearance in the 1930's, in Garrett BIRKHOFF'S paper on "The structure of abstract algebras" and B. H. NEUMANN'S paper "Identical relations in groups I". For quite some time after this, there is little published evidence that the subject remained alive. In fact, however, as part of "universal algebra", it aroused great interest amongst those who had access, directly or indirectly, to PHILIP HALL'S lectures given at Cambridge late in the 1940's....
Varieties of algebras are equationally defined classes of algebras, or "primitive classes" in MAL'CEV'S terminology. They made their first explicit ap...