The theory of polycyclic groups is a branch of infinite group theory which has a rather different flavour from the rest of that subject. This book is a comprehensive account of the present state of this theory. As well as providing a connected and self-contained account of the group-theoretical background, it explains in detail how deep methods of number theory and algebraic group theory have been used to achieve some very recent and rather spectacular advances in the subject. Up to now, most of this material has only been available in scattered research journals, and some of it is new. This...
The theory of polycyclic groups is a branch of infinite group theory which has a rather different flavour from the rest of that subject. This book is ...
An advanced monograph on a central topic in the theory of differential equations, Heat Kernels and Spectral Theory investigates the theory of second-order elliptic operators. While the study of the heat equation is a classical subject, this book analyses the improvements in our quantitative understanding of heat kernels. The author considers variable coefficient operators on regions in Euclidean space and Laplace-Beltrami operators on complete Riemannian manifolds. He also includes results pertaining to the heat kernels of Schrodinger operators; such results will be of particular interest to...
An advanced monograph on a central topic in the theory of differential equations, Heat Kernels and Spectral Theory investigates the theory of second-o...
Algebraic coding theory has in recent years been increasingly applied to the study of combinatorial designs. This book gives an account of many of those applications together with a thorough general introduction to both design theory and coding theory developing the relationship between the two areas. The first half of the book contains background material in design theory, including symmetric designs and designs from affine and projective geometry, and in coding theory, coverage of most of the important classes of linear codes. In particular, the authors provide a new treatment of the...
Algebraic coding theory has in recent years been increasingly applied to the study of combinatorial designs. This book gives an account of many of tho...
In this tract, Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Among the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves; there is also a new proof of the...
In this tract, Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the t...
The book provides an introduction to the theory of cluster sets, a branch of topological analysis which has made great strides in recent years. The cluster set of a function at a particular point is the set of limit values of the function at that point which may be either a boundary point or (in the case of a non-analytic function) an interior point of the function's domain. In topological analysis, its main application is to problems arising in the theory of functions of a complex variable, with particular reference to boundary behaviour such as the theory of prime ends under conformal...
The book provides an introduction to the theory of cluster sets, a branch of topological analysis which has made great strides in recent years. The cl...
Certain functions, capable of expansion only as a divergent series, may nevertheless be calculated with great accuracy by taking the sum of a suitable number of terms. The theory of such asymptotic expansions is of great importance in many branches of pure and applied mathematics and in theoretical physics. Solutions of ordinary differential equations are frequently obtained in the form of a definite integral or contour integral, and this tract is concerned with the asymptotic representation of a function of a real or complex variable defined in this way. After a preliminary account of the...
Certain functions, capable of expansion only as a divergent series, may nevertheless be calculated with great accuracy by taking the sum of a suitable...
Ideal theory is important not only for the intrinsic interest and purity of its logical structure but because it is a necessary tool in many branches of mathematics. In this introduction to the modern theory of ideals, Professor Northcott assumes a sound background of mathematical theory but no previous knowledge of modern algebra. After a discussion of elementary ring theory, he deals with the properties of Noetherian rings and the algebraic and analytical theories of local rings. In order to give some idea of deeper applications of this theory the author has woven into the connected...
Ideal theory is important not only for the intrinsic interest and purity of its logical structure but because it is a necessary tool in many branches ...
Written in the wake of the advent of Relativity by an author who made important contributions to projective and differential geometry, and topology, this early Cambridge Tract in Mathematics and Theoretical Physics aimed to assist students of the time from the fields of differential geometry and mathematical physics. Beginning by introducing formal preliminaries, the text continues, bringing the underlying differential invariant theory that to this day remains relevant in a range of geometrical and physical applications, to the fore.
Written in the wake of the advent of Relativity by an author who made important contributions to projective and differential geometry, and topology, t...
An important part of homological algebra deals with modules possessing projective resolutions of finite length. This goes back to Hilbert??'s famous theorem on syzygies through, in the earlier theory, free modules with finite bases were used rather than projective modules. The introduction of a wider class of resolutions led to a theory rich in results, but in the process certain special properties of finite free resolutions were overlooked. D. A. Buchsbaum and D. Eisenbud have shown that finite free resolutions have a fascinating structure theory. This has revived interest in the simpler...
An important part of homological algebra deals with modules possessing projective resolutions of finite length. This goes back to Hilbert??'s famous t...