The Levy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well developed in recent years and this book was the first systematic treatment of the Levy Laplace operator. The book describes the infinite-dimensional analogues of finite-dimensional results, and more especially those features which appear only in the generalized context. It develops a theory of operators generated by the Levy Laplacian and the symmetrized Levy Laplacian, as well as a theory of linear and nonlinear equations involving it. There are many problems leading...
The Levy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well developed in recent yea...
This introduction treats the classical isoperimetric inequality in Euclidean space and contrasting rough inequalities in noncompact Riemannian manifolds. In Euclidean space the emphasis is on a most general form of the inequality sufficiently precise to characterize the case of equality, and in Riemannian manifolds the emphasis is on those qualitiative features of the inequality that provide insight into the coarse geometry at infinity of Riemannian manifolds. The treatment in Euclidean space features a number of proofs of the classical inequality in increasing generality, providing in the...
This introduction treats the classical isoperimetric inequality in Euclidean space and contrasting rough inequalities in noncompact Riemannian manifol...
Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the authors give a definitive account of the various Clifford algebras over a real Hilbert space and of their Fock representations. A careful consideration of the latter's transformation properties under Bogoliubov automorphisms leads to the restricted orthogonal group. From there, a study of inner Bogoliubov automorphisms enables the authors to construct infinite-dimensional spin groups. Apart from assuming a basic background in functional analysis and...
Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the autho...
The main focus of this book is on the development of the theory of Graph Directed Markov Systems. This far-reaching generalization of the theory of conformal iterated systems can be applied in many situations, including the theory of dynamical systems. Dan Mauldin and Mariusz Urbanski include much of the necessary background material to increase the appeal of this book to graduate students as well as researchers. They also include an extensive list of references for further reading.
The main focus of this book is on the development of the theory of Graph Directed Markov Systems. This far-reaching generalization of the theory of co...
Here is an introduction to dynamical systems and ergodic theory with an emphasis on smooth actions of noncompact Lie groups. The main goal is to serve as an entry into the current literature on the ergodic theory of measure preserving actions of semisimple Lie groups for students who have taken the standard first year graduate courses in mathematics. The author develops in a detailed and self-contained way the main results on Lie groups, Lie algebras, and semisimple groups, including basic facts normally covered in first courses on manifolds and Lie groups plus topics such as integration of...
Here is an introduction to dynamical systems and ergodic theory with an emphasis on smooth actions of noncompact Lie groups. The main goal is to serve...
This vital work is both an introduction to, and a survey of singularity theory, in particular, studying singularities by means of differential forms. Here, some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss-Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and...
This vital work is both an introduction to, and a survey of singularity theory, in particular, studying singularities by means of differential forms. ...
To help the reader access the current state of research in this branch of number theory, Yann Bugeaud combines the most important results previously scattered throughout the research literature and also includes a number of significant open questions. Although written for graduates who wish to pursue research, the collection will also be an invaluable reference work for established researchers.
To help the reader access the current state of research in this branch of number theory, Yann Bugeaud combines the most important results previously s...
Among the modern methods used to study prime numbers, the sieve has been one of the most efficient. Originally conceived by Linnik in 1941, the large sieve has developed extensively since the 1960s, with a recent realization that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices;...
Among the modern methods used to study prime numbers, the sieve has been one of the most efficient. Originally conceived by Linnik in 1941, the large ...
As probability and combinatorics have penetrated the fabric of mathematical activity, sieve methods have become more versatile and sophisticated and in recent years have played a part in some of the most spectacular mathematical discoveries. Nearly a hundred years have passed since Viggo Brun invented his famous sieve, and the use of sieve methods is constantly evolving. Many arithmetical investigations encounter a combinatorial problem that requires a sieving argument, and this tract offers a modern and reliable guide in such situations. The theory of higher dimensional sieves is thoroughly...
As probability and combinatorics have penetrated the fabric of mathematical activity, sieve methods have become more versatile and sophisticated and i...
'Martin's axiom' is one of the most fruitful axioms which have been devised to show that certain properties are insoluble in standard set theory. It has important 1applications m set theory, infinitary combinatorics, general topology, measure theory, functional analysis and group theory. In this book Dr Fremlin has sought to collect together as many of these applications as possible into one rational scheme, with proofs of the principal results. His aim is to show how straightforward and beautiful arguments can be used to derive a great many consistency results from the consistency of...
'Martin's axiom' is one of the most fruitful axioms which have been devised to show that certain properties are insoluble in standard set theory. It h...