'Martin's axiom' is one of the most fruitful axioms which have been devised to show that certain properties are insoluble in standard set theory. It has important 1applications m set theory, infinitary combinatorics, general topology, measure theory, functional analysis and group theory. In this book Dr Fremlin has sought to collect together as many of these applications as possible into one rational scheme, with proofs of the principal results. His aim is to show how straightforward and beautiful arguments can be used to derive a great many consistency results from the consistency of...
'Martin's axiom' is one of the most fruitful axioms which have been devised to show that certain properties are insoluble in standard set theory. It h...
Measure Theory has played an important part in the development of functional analysis: it has been the source of many examples for functional analysis, including some which have been leading cases for major advances in the general theory, and certain results in measure theory have been applied to prove general results in analysis. Often the ordinary functional analyst finds the language and a style of measure theory a stumbling block to a full understanding of these developments. Dr Fremlin's aim in writing this book is therefore to identify those concepts in measure theory which are most...
Measure Theory has played an important part in the development of functional analysis: it has been the source of many examples for functional analysis...