Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and...
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direc...
Written by two foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and for experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including...
Written by two foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate ...
This text on contact topology is the first comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of...
This text on contact topology is the first comprehensive introduction to the subject, including recent striking applications in geometric and differen...
Fragmentation and coagulation are two natural phenomena that can be observed in many sciences and at a great variety of scales - from, for example, DNA fragmentation to formation of planets by accretion. This book, by the author of the acclaimed Levy Processes, is the first comprehensive theoretical account of mathematical models for situations where either phenomenon occurs randomly and repeatedly as time passes. This self-contained treatment develops the models in a way that makes recent developments in the field accessible. Each chapter ends with a comments section in which important...
Fragmentation and coagulation are two natural phenomena that can be observed in many sciences and at a great variety of scales - from, for example, DN...
Many problems in science and engineering are described by nonlinear differential equations, which can be notoriously difficult to solve. Through the interplay of topological and variational ideas, methods of nonlinear analysis are able to tackle such fundamental problems. This graduate text explains some of the key techniques in a way that will be appreciated by mathematicians, physicists and engineers. Starting from elementary tools of bifurcation theory and analysis, the authors cover a number of more modern topics from critical point theory to elliptic partial differential equations. A...
Many problems in science and engineering are described by nonlinear differential equations, which can be notoriously difficult to solve. Through the i...
Starting from a few concrete problems such as random walks on the discrete circle and the finite ultrametric space, this book develops the necessary tools for the asymptotic analysis of these processes. Its topics range from the basic theory needed for students new to this area, to advanced topics such as the theory of Green s algebras, the complete analysis of the random matchings, and a presentation of the presentation theory of the symmetric group. This self-contained, detailed study culminates with case-by-case analyses of the cut-off phenomenon discovered by Persi Diaconis."
Starting from a few concrete problems such as random walks on the discrete circle and the finite ultrametric space, this book develops the necessary t...
This self-contained text concentrates on the perspective of analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author describes, in detail, many interesting examples, including formulas which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the...
This self-contained text concentrates on the perspective of analysis, assuming only elementary knowledge of linear algebra and basic differential calc...
Detailing the very latest research, this self-contained book discusses the major mathematical tools necessary for the study of complex dynamics at an advanced level. Complete proofs of some of the major tools are presented; some, such as the Bers-Royden theorem on holomorphic motions, appear for the very first time in book format. Originating with the pioneering works of P. Fatou and G. Julia, the subject of complex dynamics has seen great advances in recent years. This necessary book will appeal to graduate students and researchers working in dynamical systems and related fields. Carefully...
Detailing the very latest research, this self-contained book discusses the major mathematical tools necessary for the study of complex dynamics at an ...
As a partner to Volume 1: Dimensional Continuous Models, this book provides a self-contained introduction to solition equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses...
As a partner to Volume 1: Dimensional Continuous Models, this book provides a self-contained introduction to solition equations. The systems studied i...
The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two...
The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answ...