This book describes the mathematical theory inspired by the irreversible nature of time-evolving events. The first part of the book deals with the ability to steer a system from any point of departure to any desired destination. The second part deals with optimal control--the problem of finding the best possible course. The author demonstrates an overlap with mathematical physics using the maximum principle, a fundamental concept of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. He...
This book describes the mathematical theory inspired by the irreversible nature of time-evolving events. The first part of the book deals with the abi...
The theme of this unique work, the logarithmic integral, is found throughout much of twentieth century analysis. It is a thread connecting many apparently separate parts of the subject, and so is a natural point at which to begin a serious study of real and complex analysis. The author's aim is to show how, from simple ideas, one can build up an investigation that explains and clarifies many different, seemingly unrelated problems; to show, in effect, how mathematics grows.
The theme of this unique work, the logarithmic integral, is found throughout much of twentieth century analysis. It is a thread connecting many appare...
This book develops aspects of category theory fundamental to the study of algebraic K-theory. Starting with categories in general, the text then examines categories of K-theory and moves on to tensor products and the Morita theory. The categorical approach to localizations and completions of modules is formulated in terms of direct and inverse limits. The authors consider local-global techniques that supply information about modules from their localizations and completions and underlie some interesting applications of K-theory to number theory and geometry. Many useful exercises, concrete...
This book develops aspects of category theory fundamental to the study of algebraic K-theory. Starting with categories in general, the text then exami...
This is the first comprehensive text to cover finite linear spaces. It contains all the important results that have been published up to the present day and is designed to be used not only as a resource for researchers in this and related areas but also as a graduate level text. In eight chapters, the authors introduce and review fundamental results and go on to cover the major areas of interest in linear spaces. A combinatorial approach is used for the greater part of the book, but in the final chapter recent advances in group theory relating to finite linear spaces are presented. At the end...
This is the first comprehensive text to cover finite linear spaces. It contains all the important results that have been published up to the present d...
This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of the century. It brings together ideas from group theory, algebraic geometry and number theory, topology, and analysis. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory. The first part of the book is quite elementary, and leads up to the basic rigidity criteria for the realization of groups as Galois groups. The second part presents more...
This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of...
This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semisimple Lie algebras. Lie theory, in its own right, has become regarded as a classical branch of mathematics. Written in an informal style, this is a contemporary introduction to the subject which emphasizes the main concepts of the proofs and outlines the necessary technical details, allowing the material to be conveyed concisely. Based on a...
This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. The material covered ranges...
This two-volume work bridges the gap between introductory expositions of logic (or set theory) and the research literature. It can be used as a text in an advanced undergraduate or beginning graduate course in mathematics, computer science, or philosophy. The volumes are written in a user-friendly lecture style that makes them equally effective for self-study or class use. Volume I includes formal proof techniques, applications of compactness (including nonstandard analysis), computability and its relation to the completeness phenonmenon, and the first presentation of a complete proof of...
This two-volume work bridges the gap between introductory expositions of logic (or set theory) and the research literature. It can be used as a text i...
This book deals with equations that have played a central role in the interplay between partial differential equations and probability theory. Most of this material has been treated elsewhere, but it is rarely presented in a manner that makes it readily accessible to people whose background is probability theory. Many results are given new proofs designed for readers with limited expertise in analysis. The author covers the theory of linear, second order partial differential equations of parabolic and elliptic type. Many of the techniques have antecedents in probability theory, although the...
This book deals with equations that have played a central role in the interplay between partial differential equations and probability theory. Most of...
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and...
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direc...