Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains,...
Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics...
In recent decades, turbulence has evolved into a very active field of theoretical physics. The origin of this development is the approach to turbulence from the point of view of deterministic dynamical systems, and this book shows how concepts developed for low dimensional chaotic systems are applied to turbulent states. This book centers around a number of important simplified models for turbulent behavior in systems ranging from fluid motion (classical turbulence) to chemical reactions and interfaces in disordered systems. The theory of fractals and multifractals now plays a major role in...
In recent decades, turbulence has evolved into a very active field of theoretical physics. The origin of this development is the approach to turbulenc...
This book describes recent advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and to transport by deterministic diffusion in particular. The author presents the basic tools of dynamical systems theory, such as dynamical instability, topological analysis, periodic-orbit methods, Liouvillian dynamics, dynamical randomness and large-deviation formalism. These tools are applied to chaotic scattering and to transport in systems near equilibrium and maintained out of equilibrium. This book will be bought by researchers interested...
This book describes recent advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and...
Lattice gas hydrodynamics describes the approach to fluid dynamics using a micro-world constructed as an automaton universe, where the microscopic dynamics is based not on a description of interacting particles, but on the laws of symmetry and invariance of macroscopic physics. We imagine point-like particles residing on a regular lattice, where they move from node to node and undergo collisions when their trajectories meet. If the collisions occur according to some simple logical rules, and if the lattice has the proper symmetry, then the automaton shows global behavior very similar to that...
Lattice gas hydrodynamics describes the approach to fluid dynamics using a micro-world constructed as an automaton universe, where the microscopic dyn...
This book describes recent advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and to transport by deterministic diffusion in particular. The author presents the basic tools of dynamical systems theory, such as dynamical instability, topological analysis, periodic-orbit methods, Liouvillian dynamics, dynamical randomness and large-deviation formalism. These tools are applied to chaotic scattering and to transport in systems near equilibrium and maintained out of equilibrium. This book will be bought by researchers interested...
This book describes recent advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and...
In recent decades, turbulence has evolved into a very active field of theoretical physics. The origin of this development is the approach to turbulence from the point of view of deterministic dynamical systems, and this book shows how concepts developed for low dimensional chaotic systems are applied to turbulent states. This book centers around a number of important simplified models for turbulent behavior in systems ranging from fluid motion (classical turbulence) to chemical reactions and interfaces in disordered systems. The theory of fractals and multifractals now plays a major role in...
In recent decades, turbulence has evolved into a very active field of theoretical physics. The origin of this development is the approach to turbulenc...
This 1998 book describes the progress that had been made towards the development of a comprehensive understanding of the formation of complex, disorderly patterns under conditions far from equilibrium. The application of fractal geometry and scaling concepts to the quantitative description and understanding of structure formed under non-equilibrium conditions is described. Self-similar fractals, multi-fractals and scaling methods are discussed, with examples, to facilitate applications in the physical sciences. Computer simulations and experimental studies are emphasised, but the author also...
This 1998 book describes the progress that had been made towards the development of a comprehensive understanding of the formation of complex, disorde...