In recent decades, turbulence has evolved into a very active field of theoretical physics. The origin of this development is the approach to turbulence from the point of view of deterministic dynamical systems, and this book shows how concepts developed for low dimensional chaotic systems are applied to turbulent states. This book centers around a number of important simplified models for turbulent behavior in systems ranging from fluid motion (classical turbulence) to chemical reactions and interfaces in disordered systems. The theory of fractals and multifractals now plays a major role in...
In recent decades, turbulence has evolved into a very active field of theoretical physics. The origin of this development is the approach to turbulenc...
At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been...
At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions...