An unmanned aerial vehicle (UAV) is an aircraft that is equipped with necessary data processing units, sensors, automatic control and communications systems, and is capable of performing autonomously flight missions without a human pilot. Unmanned Rotorcraft Systems provides a complete treatment of the design of fully autonomous miniature rotorcraft UAVs. It is an integration of advanced technologies developed in communications, computing and control areas. In particular, it focuses on:
-the systematic hardware construction;
-software systems integration;
-aerodynamic...
An unmanned aerial vehicle (UAV) is an aircraft that is equipped with necessary data processing units, sensors, automatic control and communication...
Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency. Thermal energy systems are explored in depth, as are photovoltaic generation and other solar energy applications such as solar furnaces and solar refrigeration systems. This second and updated edition of Advanced Control of Solar Plants includes new material on: solar towers and solar tracking; heliostat calibration, characterization and offset correction; solar radiation, estimation, prediction, and computation; and...
Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in incre...
Industrial Process Identification and Control Design is devoted to advanced identification and control methods for the operation of continuous-time processes both with and without time delay, in industrial and chemical engineering practice. The simple and practical step- or relay-feedback test is employed when applying the proposed identification techniques, which are classified in terms of common industrial process type: open-loop stable; integrating; and unstable, respectively. Correspondingly, control system design and tuning models that follow are presented for single-input-single-output...
Industrial Process Identification and Control Design is devoted to advanced identification and control methods for the operation of continuous-time pr...
first industrial application of MPC was in 1973. A key motivation was to provide better performance than could be obtained with the widely-used PID controller whilst making it easy to replace the PID controller unit or module with his new algorithm. It was the advent of digital control technology and the use of software control algorithms that made this replacement easier and more acceptable to process engineers. A decade of industrial practice with PFC was reported in the archival literature by Jacques Richalet et al. in 1978 in an important seminal Automatica paper. Around this time, Cutler...
first industrial application of MPC was in 1973. A key motivation was to provide better performance than could be obtained with the widely-used PID co...
Reset Control Systems addresses the analysis for reset control treating both its basic form which requires only that the state of the controller be reinitialized to zero (the reset action) each time the tracking error crosses zero (the reset condition), and some useful variations of the reset action (partial reset with fixed or variable reset percentage) and of the reset condition (fixed or variable reset band and anticipative reset). The issues regarding reset control - concepts and motivation; analysis tools; and the application of design methodologies to real-world examples -...
Reset Control Systems addresses the analysis for reset control treating both its basic form which requires only that the state of the cont...
Extremum-seeking control tracks a varying maximum or minimum in a performance function such as output or cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum-seeking Control and Applications is divided into two parts. In the first, the authors review existing analog-optimization-based extremum-seeking control including gradient-, perturbation- and sliding-mode-based control designs. They then propose a novel numerical-optimization-based extremum-seeking control based on optimization...
Extremum-seeking control tracks a varying maximum or minimum in a performance function such as output or cost. It attempts to determine the optimal pe...
Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance. The electrical power generated is normally controlled by individual feedback loops on each unit. The reference input to the power loop is the grid frequency deviation from its set point, thus structuring an external frequency control loop. The book discusses practical and well-documented cases of modelling and controlling hydropower stations, focused on a pumped storage scheme based in Dinorwig, North Wales. These accounts are valuable to...
Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance...
The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-differential (PID) form of control. PID Control in the Third Millennium provides an overview of the advances made as a result. Featuring: new approaches for controller tuning; control structures and configurations for more efficient control; practical issues in PID implementation; and non-standard approaches to PID including fractional-order, event-based, nonlinear, data-driven and predictive control; the nearly twenty chapters provide a state-of-the-art resume of PID controller theory,...
The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-differential (PID) form of control. PID Con...
Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs).
Sliding-mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to...
Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market p...
The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of switched electronic systems . Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched...
The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal...