wyszukanych pozycji: 5
Constrained Principal Component Analysis and Related Techniques
ISBN: 9781466556669 / Angielski / Twarda / 2013 / 251 str. Termin realizacji zamówienia: ok. 16-18 dni roboczych. In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data.
Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified... In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a sub... |
|
cena:
478,07 zł |
Constrained Principal Component Analysis and Related Techniques
ISBN: 9780367576288 / Angielski / Miękka / 2020 / 251 str. Termin realizacji zamówienia: ok. 16-18 dni roboczych. |
|
cena:
239,01 zł |
Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling
ISBN: 9780367738754 / Angielski / Miękka / 2020 / 342 str. Termin realizacji zamówienia: ok. 16-18 dni roboczych. |
|
cena:
239,01 zł |
Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition
ISBN: 9781461428596 / Angielski / Miękka / 2013 / 236 str. Termin realizacji zamówienia: ok. 20 dni roboczych. This valuable reference on projectors, generalized inverses, and SVD covers concepts numerous cutting-edge concepts and provides systematic and in-depth accounts of these ideas from the viewpoint of linear transformations of finite dimensional vector spaces.
This valuable reference on projectors, generalized inverses, and SVD covers concepts numerous cutting-edge concepts and provides systematic and in-dep...
|
|
cena:
330,72 zł |
Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition
ISBN: 9781441998866 / Angielski / Twarda / 2011 / 248 str. Termin realizacji zamówienia: ok. 20 dni roboczych. Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because...
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic...
|
|
cena:
389,09 zł |