


ISBN-13: 9781119523307 / Angielski / Twarda / 2020 / 464 str.
ISBN-13: 9781119523307 / Angielski / Twarda / 2020 / 464 str.
Part I Scope 11 Introduction 3Melissa N. Dunkle and William L. Winniford1.1 Introduction 31.1.1 Petroleum Cycle 31.1.2 Well-Known Cases of Environmental Contamination 41.1.2.1 Oil-Drilling Rig Deepwater Horizon 41.1.2.2 Sanchi Oil Tanker Collision 61.1.3 Summary 61.2 Petroleum 71.3 Analytics 91.4 Reservoir Tracers 121.5 Emissions from the Petroleum Industry 121.6 Environmental Analysis and Monitoring 141.7 Conclusions 17References 17Part II Introduction to the Petroleum Industry 212 Petroleum: From Wells to Wheels 23Clifford C. Walters, Steven W. Levine, and Frank C. Wang2.1 Introduction 232.2 Petroleum in the Ancient World 232.3 The Petroleum System 282.3.1 Source Rocks 282.3.2 Generation of Petroleum 342.3.3 Migration and Accumulation 352.4 The Upstream 372.4.1 Exploration 372.4.1.1 Play and Prospect Evaluation 382.4.1.2 Predicting Petroleum Quantity and Quality 432.4.2 Drilling 452.4.2.1 Development of Drilling Technology 462.4.2.2 Modern Drilling Practices 492.4.2.3 Well Logging 522.4.2.4 Development 572.4.3 Production 582.4.3.1 Primary, Secondary, and Tertiary Production 582.4.3.2 Surface Oil Sands 612.4.3.3 Unconventional Resources 612.4.3.4 Plug and Abandonment 662.5 Mid-Stream 672.5.1 Transportation 672.5.2 Storage 702.6 Downstream 722.6.1 Evolution of Modern Refining 722.6.2 Modern Refinery Processes 732.6.2.1 Crude Oil Pretreatment 752.6.2.2 Separation 752.6.2.3 Conversion 812.6.2.4 Purification 952.6.2.5 Sweetening and Treating 1002.6.3 Fuel Products 1022.6.3.1 Mogas (Motor Gasoline) 1032.6.3.2 Diesel 1042.6.3.3 Jet Fuels/Kerosene 1062.6.3.4 Fuel Oil 1062.6.3.5 Liquefied Petroleum Gas (LPG) 1072.7 Petrochemicals 1072.7.1 Olefins: Prime and Higher Olefins 1072.7.2 Aromatics 1092.7.3 Lubes 1092.7.4 Other Products 1102.8 The Future of Petroleum 110References 112Part III Analytical Techniques Utilized in the Petroleum Industry 1213 Petroleum Analysis Through Conventional Analytical Techniques 123Melissa N. Dunkle and William L. Winniford3.1 Introduction to Petroleum Analysis 1233.2 Brief History on Petroleum Analysis 1233.2.1 How Petroleum Analysis Influenced Developments in Gas Chromatography 1243.2.1.1 Detector Technology 1253.2.1.2 Column Technology 1323.3 Conventional Analysis of Petroleum 1353.3.1 Distillation 1363.3.2 PIONA Analyzer 1373.3.3 Detailed Hydrocarbon Analysis 1383.3.4 GC-MS Analysis for Unknown and Biomarker Identification 1393.3.4.1 Diamondoids 1403.3.4.2 Naphthenic Acids 1413.3.4.3 Biomarkers 1423.3.5 Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbon (PAH) and Their Environmental Impact 1453.3.6 Tar Analysis 1463.3.7 Analysis of Heteroatoms and Heavy Metals 1493.3.7.1 Heteroatoms 1493.3.7.2 Heavy Metals 1503.3.8 Additional Analytical Applications for Petroleum 150References 1504 Advanced Analytics for the Evaluation of Oil, Natural Gas, and Shale Oil/Gas 161Emmie Dumont, Pat Sandra, Kyra A. Murrell, Frank L. Dorman, Allegra Leghissa, and Kevin A. Schug4.1 IRMS in the Oil and Gas Industry 1614.1.1 IRMS: General 1614.1.1.1 Introduction 1614.1.1.2 Isotopic Fingerprint 1624.1.2 IRMS: The Technique 1644.1.2.1 Introduction 1644.1.2.2 Ionization 1644.1.2.3 Mass Analyzer 1644.1.2.4 Detection 1654.1.2.5 Referencing 1654.1.2.6 Bulk Analysis 1654.1.3 Compound Specific IRMS 1664.1.3.1 Introduction 1664.1.3.2 GC-IRMS 1664.1.3.3 LC-IRMS 1674.1.3.4 Two-Dimensional GC-IRMS 1684.1.4 IRMS Applications in the Oil and Gas Industry 1694.1.4.1 Introduction 1694.1.4.2 Oil Fingerprinting 1714.1.4.3 Air Pollution 1724.1.4.4 Differentiating Oil Derived Products 1744.1.4.5 Inherent Tracers for Carbon Capture and Storage (CCS) 1744.1.5 Conclusions Over Utilization of IRMS in the Oil and Gas Industry 1764.2 Advanced Analytics for the Evaluation of Oil, Natural Gas, and Shale Oil/Gas: Comprehensive GC (GC × GC) 1764.2.1 Background 1764.2.2 Basic Principles of GC× GC: Instrumentation 1784.2.3 Basic Principles of GC× GC: Columns 1804.2.4 Basic Principles of GC× GC: Modulators 1844.2.5 Basic Principles of GC× GC: Detectors 1864.2.6 Basic Principles of GC× GC: Data Processing 1874.2.7 Petrochemical Applications: Group-Type Analysis 1904.2.8 Petrochemical Applications: Contaminated Soil and Sediments 1934.2.9 Petrochemical Applications: Marine Oil Spills 1964.2.10 Petrochemical Applications: Hydraulic Fracturing 1994.2.11 Conclusions of Utilizing GC×GC in the Oil and Gas Industry 2014.3 Petroleum and Hydrocarbon Analysis by Gas Chromatography: Vacuum Ultraviolet Spectroscopy 2024.3.1 Introduction to GC-VUV 2024.3.2 GC-VUV Data Processing 2044.3.2.1 Time Interval Deconvolution (TID) Algorithm 2064.3.2.2 Pseudo-absolute Quantitation 2084.3.3 GC-VUV Applications 2104.3.4 GC-VUV Conclusions 214References 2155 Liquid Chromatography: Applications for the Oil and Gas Industry 225Denice van Herwerden, Bob W. J. Pirok, and Peter J. Schoenmakers5.1 Introduction 2255.1.1 Petroleum Industry 2255.1.2 Introduction to Liquid Chromatography 2265.2 Group-Type Separations 2285.2.1 Group-Type Separations of Heavy Distillates 2285.2.2 Other Group-Type Separations 2325.3 Molecular-Weight Distribution 2335.4 Target Analysis 2365.4.1 Polyaromatic Hydrocarbons 2365.4.2 Naphthenic Acids 2405.4.3 Phenols 2445.5 LC as a Pre-separation Technique for GC Analysis 2455.6 Conclusions 247References 2486 Supercritical Fluids in Chromatography: Applications to the Oil and Gas Industry 259Didier Thiébaut and Robert M. Campbell6.1 Introduction 2596.2 Basics of SFC 2606.2.1 Packed Column SFC 2626.2.1.1 Implementation 2626.2.1.2 Applications of Packed Column SFC 2646.2.2 Capillary SFC 2656.3 Simulated Distillation (SIMDIST) 2666.3.1 Experimental 2676.3.2 Results 2676.4 Group-Type and Related Separations 2706.4.1 Heavy Samples 2716.4.2 Additives 2726.5 Detailed Separations 2736.5.1 Surfactant and Alkoxylate Polymer Analysis by SFC 2736.5.1.1 Open Tubular Columns 2736.5.1.2 Packed Capillary Column SFC of Surfactants 2746.5.2 Packed Column SFC of Surfactants 2756.5.2.1 Surfactants by Sub-2 mum Particle Packed Column SFC 2766.5.2.2 Surfactant Characterization by SFC/MS: Software-Assisted Deconvolution of Co-polymers 2806.5.2.3 CO2 Cloud Point Pressures of Non-ionic Surfactants by Capillary and Packed Column SFC 2806.5.2.4 CO2/Water Partition Coefficients by SFC 2806.5.2.5 SFC of Ionic Surfactants 2816.5.3 Capillary SFC of Surfactants 2816.5.3.1 Large Volume Injection in Capillary SFC 2816.5.3.2 Splitless Injection in Capillary SFC 2826.5.4 Separations of Polyaromatic Hydrocarbons (PAHs) 2836.5.5 SFC in Multidimensional Separations 2856.5.5.1 LC× SFC 2856.5.5.2 Feasibility of SFC× SFC 287References 2887 Online and In Situ Measurements for Environmental Applications in Oil and Gas 299Eric Schmidt, J.D. Tate, William L. Winniford, and Melissa N. Dunkle7.1 Introduction 2997.2 Characteristics of On-line Analyzers 3007.2.1 Zone Classification 3007.2.2 Sampling Systems 3017.2.3 Detection 3027.3 Water Analysis 3027.3.1 General Water Analysis 3027.3.2 Application: Benzene in Drinking Water 3037.4 Air Quality and Emissions Monitoring 3047.4.1 Regulations 3057.4.1.1 US Air Monitoring 3057.4.1.2 European Union Air Monitoring 3057.4.2 Proton Transfer Reaction Mass Spectrometry for Emission Monitoring 3077.5 Sample Conditioning 3097.6 Well Drilling and Production 3097.6.1 Well Logging 3107.6.2 Emissions 3127.7 Texas Commission on Environmental Quality 3127.8 Fenceline Monitoring 3137.9 Pipeline and Fugitive Emission Monitoring with Drones 3177.10 Types of Continuous Emission Monitors 3177.10.1 Nondispersive IR (NDIR) 3177.10.2 UV and Dispersive IR 3197.10.3 Chemiluminescent NOx/SOx Analyzers 3197.10.4 TDL Analyzers 3207.10.5 QCL Analyzers 3217.11 Portable GCs 321References 324Part IV Special Cases and Examples Related to the Petroleum Industry 3298 Tracers for Oil and Gas Reservoirs 331William L. Winniford and Melissa N. Dunkle8.1 Introduction 3318.2 Types of Tracers 3348.2.1 Radioactive Water Tracers 3348.2.2 Radioactive Gas Tracers 3368.2.3 Radioactive Measurement Techniques 3368.2.4 Example Studies of Radioactive Tracers 3388.2.5 Chemical Water Tracers 3388.2.6 Chemical Gas Tracers 3398.2.7 Naturally Occurring Tracers 3408.2.7.1 Isotopes 3408.2.7.2 Biomarkers 3418.3 Regulations 341References 3439 Environmental Impact of Emissions Originating from the Petroleum Industry 347Melissa N. Dunkle and William L. Winniford9.1 Global Warming 3479.1.1 Causes of Global Warming 3479.1.2 Combatting Global Warming 3499.2 Environmental Impact of Diesel Emissions 3509.2.1 Diesel Engine 3509.2.2 Diesel Exhaust 3509.2.3 Diesel Engine Modifications 3519.2.4 Diesel Fuel Modifications 3549.2.4.1 Low Sulfur Diesel 3559.2.4.2 Ultra-Low Sulfur Diesel 3559.2.4.3 Biodiesel 3559.2.4.4 Modification of Diesel and Biodiesel with Oxygenates 3579.2.5 Sulfur Monitoring of Diesel Fuels 3589.2.6 Monitoring Air Pollution/Haze 3599.3 Environmental Impact of Fossil Fuel Sourcing and Energy Conversion on Global Warming 3609.3.1 Coal Mining, Natural Gas Wells, and Methane Release 3609.3.1.1 Coal Mine Methane 3629.3.1.2 Natural Gas Methane 3639.3.2 Fossil Fuel Power Stations 3639.3.2.1 Coal-Fired Power Station 3639.3.2.2 Gas-Fired Power Station 3649.3.3 Emissions from Fossil Fuel Power Stations 3649.3.3.1 Carbon Dioxide 3659.3.3.2 Sulfur Dioxide 3669.3.3.3 Nitrogen Oxides 3679.3.3.4 Particulate Matter (PM) 3679.3.3.5 Coal Ash and Heavy Metals 3689.3.4 Wastewater from Fossil Fuel Power Stations 3699.3.5 Analysis of Ground Water 371References 371Part V Environmental Analysis 37910 Environmental Analysis of Soil, Water, and Air 381Paige Teehan, Kyra A. Murrell, Romano Jaramillo, A. Paige Wicker, Robert Parette, Kevin A. Schug, and Frank L. Dorman10.1 Water and Soil Monitoring 38110.2 Total Petroleum Hydrocarbons in Soil 38210.2.1 Introduction 38210.2.2 Soil as a Matrix 38310.2.3 Sample Preparation 38310.2.3.1 Collection and Preservation 38410.2.3.2 Extraction 38410.2.3.3 Concentration 38410.2.3.4 Cleanup 38410.2.4 Sample Analysis 38610.3 Volatile Organic Compound Analysis 38910.3.1 Introduction 38910.3.2 Methane Monitoring 38910.3.2.1 Cavity Ring-Down Laser Spectrometry Techniques 39010.3.2.2 Mobile Platforms for Bottom-Up Analyses 39110.3.2.3 Aircraft-Based Top-Down Analysis 39210.3.3 Non-Methane VOC Monitoring 39210.3.3.1 Air Sampling 39210.3.3.2 Analysis of Air Samples 39310.4 Water Analysis 39310.4.1 Introduction 39310.4.2 Sample Preparation 39510.4.3 Sample Analysis 39710.5 Portable GCs for Field Monitoring 40210.5.1 Introduction 40210.5.2 Analyzing Field Samples 40310.6 Fingerprinting in the Oil and Gas Industry 40410.6.1 Introduction 40410.6.2 Hydrocarbon Fingerprinting 40510.6.3 Additional Texts on Fingerprinting Oil Spills and Petroleum Products 405References 406Part VI Future Trends in the Petroleum Industry 41711 Future Trends 419William L. Winniford and Melissa N. Dunkle11.1 Introduction 41911.2 Climate Change 42111.3 Likely Scenarios 42211.3.1 Gas Emissions 42211.3.2 Water Emissions 42511.3.3 Oil Sands 42711.3.4 Food Contact - MOSH/MOAH 42811.3.5 Industry 4.0 and the 4thWave of Environmentalism 42811.4 Summary 430References 430Index 433
MELISSA N. DUNKLE, PHD, is currently an Associate Research Scientist at Dow Benelux in The Netherlands. She focuses on R&D projects to advance analytical capabilities and improve the evaluation of natural gas feedstocks.WILLIAM L. WINNIFORD, PHD, is currently a Fellow at The Dow Chemical Company in Freeport, Texas. His primary field of research is analytical separations, currently focused on comprehensive two-dimensional chromatography.
1997-2025 DolnySlask.com Agencja Internetowa





