ISBN-13: 9781119583325 / Angielski / Twarda / 2022 / 416 str.
ISBN-13: 9781119583325 / Angielski / Twarda / 2022 / 416 str.
List of Contributors xiPreface xiiiSeries Preface xv1 Ionizing Radiation Induced Luminescence 1Takayuki Yanagida1.1 Introduction 11.2 Interactions of Ionizing Radiation with Matter 31.3 Scintillation 41.3.1 Energy Conversion Mechanism 41.3.2 Emission Mechanism 51.3.3 Scintillation Light Yield and Energy Resolution 81.3.4 Timing Properties 141.3.5 Radiation Hardness 171.3.6 Temperature Dependence 181.4 Ionizing Radiation Induced Storage Luminescence 181.4.1 General Description 181.4.2 Analytical Description of TSL 191.4.3 Analytical Description of OSL 241.5 Relationship of Scintillation and Storage Luminescence 261.6 Common Characterization Techniques of Ionizing Radiation Induced Luminescence Properties 29References 352 Organic Scintillators 39Masanori Koshimizu2.1 Introduction 392.2 Basic Electronic Processes in Organic Scintillators 402.2.1 Electronic States and Excited States Dynamics of Organic Molecules 402.2.2 Excitation Energy Transfer 432.2.3 Scintillation Dynamics in Organic Scintillators at High Linear Energy Transfer 502.3 Liquid Scintillators 512.4 Organic Crystalline Scintillators 542.5 Plastic Scintillators 552.6 Organic-Inorganic Hybrid Scintillators 592.6.1 Loaded Organic Scintillators 592.6.2 Organic-Inorganic Nanocomposite Scintillators 60References 613 Inorganic Oxide Scintillators 67Daisuke Nakauchi, Noriaki Kawaguchi, and Takayuki Yanagida3.1 Introduction 673.2 Crystal Growth 673.3 Outlines of Oxide Scintillators 703.4 Silicate Materials 733.4.1 Ce:Gd2SiO5 (Ce:GSO) 733.4.2 Ce:Lu2SiO5 (Ce:LSO) 743.4.3 Ce:Gd2Si2O7 (Ce:GPS) 763.4.4 LPS 773.5 Garnet Materials 773.5.1 Ce:Y3Al5O12 (Ce:YAG) 773.5.2 Ce:Lu3Al5O12 (Ce:LuAG), Pr:Lu3Al5O12 (Pr:LuAG) 793.5.3 Ce:Gd3Al2Ga3O12 (Ce:GAGG) 793.5.4 Ce:Tb3Al5O12 (Ce:TAG) 803.6 Perovskite Materials 823.6.1 Ce:YAlO3 (Ce:YAP) 823.6.2 Ce:LuAlO3 (Ce:LuAP) 823.7 Materials with Intrinsic Luminescence 833.7.1 CdWO4 833.7.2 Bi4Ge3O12 (BGO) 843.7.3 PbWO4 85References 854 Inorganic Fluoride Scintillators 91Noriaki Kawaguchi, Hiromi Kimura, Daisuke Nakauchi, Takumi Kato, and Takayuki Yanagida4.1 Introduction 914.2 Crystal Growth of Fluorides 944.2.1 Classification of Methods for Crystal Growth 944.2.2 Furnace Materials, Atmosphere, and Scavengers for Fluoride Crystal Growth 954.2.3 Fluoride Crystal Growth Methods by Pulling Out from the Melt 964.2.4 Fluoride Crystal Growth Methods by Solidifying the Melt in the Crucible 984.2.5 Fluoride Crystal Growth Methods Without Using Crucibles 994.3 Outline of Fluoride Scintillators 1004.4 Fluoride Scintillators for gamma-Ray Detection 1014.4.1 Fluoride Scintillators Based on Luminescence from 5d-4f Transitions of Ce3+ Ions 1014.4.2 Fluoride Scintillators Based on Core-Valence Luminescence 1024.4.3 VUV Emitting Fluoride Scintillators Doped with Nd3+, Er3+, and Tm3+ Ions 1054.5 Fluoride Scintillators for Neutron Detection 1064.5.1 Review for Neutron Scintillators 1064.5.2 LiCaAlF6 Single Crystals 1084.5.3 LiF/CaF2 Eutectic Composites 1114.6 Fluoride Scintillators for Charged Particle Detection 1134.6.1 Methods for Charged Particle Detection 1134.6.2 CaF2 Based Scintillators for Charged Particle Detection 115References 1175 Inorganic Halide Scintillators 121Yutaka Fujimoto5.1 Introduction: History of Inorganic Halide Scintillator Research and Development 1215.2 Characteristics of Halide Materials 1225.2.1 Formation of Color Center and Self-Trapped Exciton 1225.2.2 Hygroscopicity 1235.3 Basic Techniques for Halide Scintillation Crystal Growth 1255.4 Novel Ternary and Quaternary Halide Scintillators 1275.4.1 Alkali Halide-Rare Earth Halide (AX-REX3) 1275.4.2 Alkali Halide-Alkalin Earth Halide (AX-AEX2) 1305.4.3 Elpasolite 1345.5 Mixed-Anion Halide Scintillators 1355.6 Next Generation of Halide Scintillators 1375.6.1 Hf-and Tl-BasedHalide Scintillators 137References 1416 Semiconductor Scintillators 147Naoki Kawano6.1 Introduction 1476.2 Photoluminescence and Scintillation Mechanisms in Semiconductors 1496.3 Various Semiconductor Scintillators 1546.3.1 Undoped Semiconductor Scintillator 1556.3.2 Doped Semiconductor Scintillator 1586.4 Quantum Size Effect 1616.5 Organic-Inorganic Perovskite-Type Compounds 1656.5.1 Introduction 1656.5.2 Materials and Structures 1666.5.3 Sample Preparation 1676.5.4 Fundamental Optical Property 1696.5.5 Scintillation 173References 1787 Thermally Stimulated Luminescent (TSL) Materials 181Kiyomitsu Shinsho7.1 Introduction 1817.2 TSL Phenomenon 1847.2.1 Basic Principles of TSL 1847.2.2 Theory and Measurement of Glow Curves 1857.3 TSL Materials: Fluoride, Oxides, Sulfates, and Borate 1907.3.1 Fluorides 1907.3.2 Oxides 1987.3.3 Sulfates 2027.3.4 Borates 2047.4 TSL Dosimetric Properties for Photons, Charged Particles, and Neutrons 2067.4.1 TSL Dosimetric Properties for Photons 2067.4.2 TSL Dosimetric Properties for Charged Particles 2117.4.3 TSL Dosimetric Properties for Neutrons 2147.5 Two-Dimensional (2-D) TSL Dosimetry 2147.5.1 Introduction 2147.5.2 Types of 2-D TSLDs 2157.5.3 Measurement Systems 2167.5.4 Application of 2-D TSLDs in Photon Beam Radiotherapy 2187.5.5 Outlook for 2-D TSLDs 220References 2208 Optically-Stimulated Luminescent Dosimeters 225Hidehito Nanto and Go Okada8.1 Introduction 2258.2 Principles of OSL Phenomenon 2268.3 OSL Materials and Dosimeters 2358.4 Applications of OSL 2398.5 Future Perspective 242References 2439 Radiophotoluminescence (RPL) 247Go Okada, Takayuki Yanagida, Hidehito Nanto, and Safa Kasap9.1 Introduction 2479.2 RPL Phenomenon and the Definition 2489.3 RPL Materials and Applications 2499.3.1 Introduction 2499.3.2 Ag-Doped Sodium-Aluminophosphate Glasses 2529.3.3 Al2O3:C,Mg 2609.3.4 LiF 2649.3.5 Sm-Doped Compounds 2689.3.6 Other RPL Materials 2769.4 Conclusions 278References 27810 New Materials for Radiation Detectors: Transparent Ceramics 283Takumi Kato, Noriaki Kawaguchi, and Takayuki Yanagida10.1 Introduction of Transparent Ceramic Materials 28310.1.1 Light Scattering Sources in Ceramics 28310.1.2 History and Applications on Transparent Ceramics 28510.2 Preparation Methodology 28710.2.1 Sintering Mechanism of Ceramics 28710.2.2 Effect of Residual Pores 29010.2.3 Preparation Methods of Transparent Ceramics 29110.3 Transparent Materials 29210.4 Transparent Ceramic Scintillator 29310.4.1 Sesquioxide (Such as Y2O3, Gd2O3, and Lu2O3) 29310.4.2 Gd2O2S (GOS) 29410.4.3 Garnet Materials (Such as YAG, LuAG, and GAGG) 29410.4.4 Lu2SiO5 (LSO) 29610.4.5 SrHfO3 29610.4.6 La2Zr2O7 and La2Hf2O7 29610.4.7 ZnO 29610.4.8 BaF2 29710.4.9 CeF3 29810.4.10 CsBr 29910.4.11 LaBr3 29910.4.12 SrI2 30010.5 Transparent Ceramics for Dosimeter 30010.5.1 Al2O3 30010.5.2 CaF2 30210.5.3 MgO 30210.5.4 MgF2 30310.5.5 CsBr 30410.5.6 Y3Al5-xGaxO12 (YAGG) 305References 30611 Luminescence in Glass-Based Materials by Ionizing Radiation 311Hirokazu Masai and Kenji Shinozaki11.1 Introduction 31111.2 Structural and Physical Properties of Glass 31211.3 Attenuation of Quantum Beam as Shielding Materials 32011.4 Defect Formation in Oxide Glass by Quantum Beam Irradiation 32011.5 Scintillation in Oxide Glass 32311.5.1 Glass Scintillators for X-Ray and gamma-Ray 32311.5.2 Glass Scintillators for Neutrons 32511.5.3 Storage Luminescence in Glass 32811.6 Scintillation and Dosimetry in Non-oxide Glass 32911.7 Preparation of Glass 33511.7.1 Melt Process 33511.7.2 Vapor Process and Fiber Drawing 33711.7.3 Liquid Process 33811.8 Future Prospectives for Glass-Based Materials 338Acknowledgement 339References 33912 Detectors Using Radiation Induced Luminescence 347Kenichi Watanabe12.1 Introduction 34712.2 General Issues to Manufacturing the Detector 34912.3 Scintillation Detectors for Gamma-Rays and X-Rays 35212.3.1 Gamma-Ray Spectrometer 35212.3.2 Survey Meter and Area Monitor 35612.3.3 Scintillation Detectors for Medical Applications 35812.3.4 Scintillation Detectors for Other Applications 36412.4 Scintillation Detectors for Charged Particles 36612.5 Scintillation Detectors for Neutrons 36812.5.1 Thermal Neutron Detectors 36812.5.2 Fast Neutron Detectors 37712.6 Personal Dosimeters 38012.6.1 TL-Based Dosimetry System 38012.6.2 OSL-Based Dosimetry System 38112.6.3 RPL-Based Dosimetry System 38212.7 OSL-Based Imaging System 383References 384Index 387
Edited byTakayuki Yanagida, PhD, is Professor at the Graduate School of Materials Science, Nara Institute of Science and Technology in Japan. He obtained his doctorate from the University of Tokyo. His research interests include inorganic crystal, transparent ceramic, and glass phosphors.Masanori Koshimizu is Associate Professor at the Graduate School of Engineering at Tohoku University. He has authored over 160 papers in the fields of Applied Chemistry and Quantum Physical ChemistrySeries EditorsArthur Willoughby University of Southampton, Southampton, UKPeter Capper Ex-Leonardo MW Ltd, Southampton, UKSafa Kasap University of Saskatchewan, Saskatoon, Canada
1997-2025 DolnySlask.com Agencja Internetowa