ISBN-13: 9781119448822 / Angielski / Twarda / 2022 / 416 str.
ISBN-13: 9781119448822 / Angielski / Twarda / 2022 / 416 str.
Preface xiList of Contributors xvAcknowledgements xvii1 The Road to Aromatic Functionalization by Mixed-metal Ate Chemistry 1Masanori Shigeno, Andrew J. Peel, Andrew E. H. Wheatley, and Yoshinori Kondo1.1 Introduction 11.2 Deprotonation of Aromatics 21.2.1 Monometallic Bases 21.2.2 Bimetallic Bases 71.2.2.1 Group 1/1 Reagents 71.2.2.2 Group 1/2 Reagents 111.3 Aromatic Ate Complex Chemistry: Metal/Halogen Exchange 131.3.1 Introduction 131.3.2 Zincates 131.3.3 Cuprates 171.3.4 Solid-phase Synthesis 241.4 Deprotonation Using Ate Complexes 251.4.1 Introduction 251.4.2 Zincates 261.4.3 Cadmates 291.4.4 Aluminates 301.4.5 Cuprates 321.4.6 Argentates 391.5 Concluding Remarks 41References 422 Structural Evidence for Synergistic Bimetallic Main Group Bases 49Robert E. Mulvey and Stuart D. Robertson2.1 General Introduction 492.2 Homometallic Bases 512.2.1 Carbanionic Lithium Reagents 512.2.2 Heavier Carbanionic Alkali Metal Reagents 562.2.3 Alkali Metal Amides 582.3 Heterometallic Bases 602.3.1 Heteroalkali Metal Bases 602.3.2 Alkali Metal Magnesiate Chemistry 642.3.3 Early Signs of Synergistic Behaviour in Zincate Chemistry 642.3.4 Lithium TMP-Zincate Chemistry 662.3.5 Sodium TMP-Zincate Chemistry 732.3.6 Lithium Chloride (Turbo Charged) TMP-Zinc Chemistry 782.3.7 Indirect TMP Zincation 792.3.8 Alkali Metal Group 13 Ates 802.3.9 Bimetallic Complexes Without an Alkali Metal Component 852.4 Outlook 91References 913 Turbo Charging Group 2 Reagents for Metathesis, Metalation, and Catalysis 97Michael S. Hill, Anne-Frédérique Pécharman, and Andrew S. S. Wilson3.1 Introduction and Historical Context: Monometallic s-block Reagents and Their Utility 973.2 Heterobimetallic Reagents for Selective Metalation 1003.2.1 Ate Complexes and Superbases 1003.2.2 Lithium, Sodium, Potassium Magnesiates, MMgX3 1013.2.3 Salt Effects and Magnesiate Formation 1073.2.3.1 'Turbo-Grignards' for Selective Metalation 1083.2.3.2 Turbo-Hauser Bases 1123.2.4 Ate Complexes of the Heavier Alkaline Earth Elements Ca, Sr, and Ba 1143.2.4.1 Alkyl Calciate, Strontiate, and Bariate Derivatives, MM'R3 (M = Li, Na, K; M' = Ca, Sr, Ba; R = alkyl) 1153.2.4.2 Alkoxo and Aryloxo Calciate, Strontiate, and Bariate Derivatives, MM' (OR/Ar)3 (M = Li, Na, K; M' = Ca, Sr, Ba) 1153.2.4.3 Amido Calciate, Strontiate, and Bariate Derivatives, MM'(OR/Ar)3 (M = Li, Na, K; M' = Ca, Sr, Ba) 1163.3 Homogeneous Catalysis by s-block Reagents 1173.4 Outlook: Turbo Charging the Turbo Reagents and Prospects for Catalysis 120References 1214 Mechanisms in Heterobimetallic Reactivity: Experimental and Computational Insights for Catalyst Design in Small Molecule Activation and Polymer Synthesis 133Frances N. Singer and Antoine Buchard4.1 Introduction and Scope of the Chapter 1334.2 Small Molecule Activation and Catalysis 1354.2.1 Hydrogen Activation 1354.2.2 Dinitrogen Activation 1474.2.3 CO2 Activation 1504.3 Polymerization Catalysis 1524.3.1 Olefin polymerization 1524.3.1.1 Metallocene-based Heterobimetallic Catalysts 1544.3.1.2 Constrained Geometries Heterobimetallic Catalysts 1594.3.1.3 Late Transition Metal Heterobimetallic Catalysts 1644.3.2 Ring-opening Polymerization 1714.3.2.1 ROP M1-O-M2 Heterobimetallic Catalysts 1744.3.2.2 Other Heterobimetallic Catalysts for ROP 1784.3.3 Ring-opening Copolymerization of Epoxides and Carbon Dioxide 1814.3.3.1 Mechanistic Insight into Homobimetallic Catalysts 1834.3.3.2 ROCOP Heterobimetallic Catalysts 1864.4 Conclusion 192References 1935 Cationic Compounds of Group 13 Elements: Entry Point to the p-block for Modern Lewis Acid Reagents 201Sanjay Singh, Mamta Bhandari, Sandeep Rawat, and Sharanappa Nembenna5.1 Introduction 2015.2 General Considerations 2025.2.1 Classification of Cationic Group 13 Complexes 2025.2.2 General Methods for the Syntheses of Cationic Group 13 Complexes 2035.2.3 Characteristics of Counter-anions and Solvents 2045.2.4 Quantification of LA of Cationic Group 13 Complexes 2055.2.4.1 Experimental Methods to Quantify Lewis Acidity 2065.2.4.2 Computational Approaches to Determine Lewis Acidity 2075.3 Recent Developments in Cationic Group 13 Complexes 2095.3.1 Advances in the Synthesis and Characterization of Borocations 2095.3.1.1 Borinium Cations: Two-coordinate Cationic Boron Complexes 2095.3.1.2 Borenium Cations: Three-coordinate Cationic Boron Complexes 2115.3.1.3 Borenium Cations Stabilized by NHC and MIC as Neutral C-donor Ligand 2125.3.1.4 Phosphine-coordinated Borenium Cations 2175.3.1.5 Borenium Cations Coordinated with N-donor Ligands 2185.3.1.6 Boronium Cations: Four-coordinate Cationic Boron Complexes 2205.3.1.7 Miscellaneous Borocations 2235.3.2 Advances in the Synthesis and Characterization of Aluminium Cations 2235.3.2.1 Organoaluminium Cations 2245.3.2.2 Aluminium Cations Supported by N,N'-donor Monoanionic Bidentate Ligands 2305.3.2.3 An Aluminium Cationic Complex Supported by a Neutral Bidentate N,N'-donor Ligand 2325.3.2.4 Miscellaneous Aluminium Cations that Appeared Since 2010 2325.3.3 Advances in the Synthesis and Characterization of Heavier Group 13(Ga, In, and Tl) Cations 2355.3.3.1 Low Oxidation State Univalent Heavier Group 13 Cations (Ga, In, and Tl) 2395.4 Recent Advancements in Catalytic Applications of Cationic Group 13 Complexes 2415.4.1 Borocation in Catalysis 2415.4.1.1 Cationic Boron Complexes in Catalysis 2415.4.1.2 Hydroboration Reaction 2415.4.1.3 Hydrosilylation Reaction 2435.4.1.4 Hydrogenation Reaction 2445.4.1.5 Use of Chiral NHC 2465.4.1.6 Use of Chiral Borane 2475.4.2 Cationic Al Complexes in Catalysis 2485.4.2.1 Hydroboration Reaction 2485.4.2.2 Cyanosilylation Reaction 2505.4.2.3 Hydrosilylation Reaction 2525.4.2.4 Hydroamination Reaction 2545.4.2.5 ROP of rac-Lactide, Epoxides and epsilon-Caprolactone 2555.4.3 Cationic Heavier Group 13 Complexes in Catalysis 2565.4.3.1 Cationic Gallium Complexes in Catalysis 2565.4.3.2 Activation of Alcohols 2575.4.3.3 Olefin Epoxidation in Water 2575.4.3.4 Transfer Hydrogenation of Alkene 2585.4.3.5 Hydroarylation Reaction 2585.4.3.6 Cycloisomerization of Enyne 2605.4.3.7 Tandem Carbonyl-Olefin Metathesis 2605.4.3.8 Polymerization of Propylene Oxide and Isobutylene 2615.4.3.9 Cationic Indium and Thallium Complexes in Catalysis 2625.4.3.10 Coupling of Epoxides and Lactones 2625.4.3.11 ROP of Epoxides, Lactide, and epsilon-Caprolactone 2625.5 Concluding Remarks 264References 2656 Recent Development in the Solution Structural Chemistry of Main Group Organometallics 271Alistair M. Broughton, Leonie J. Bole, Andrew E. H. Wheatley, and Eva Hevia6.1 Introduction 2716.2 Monometallic Systems 2736.2.1 Introduction 2736.2.2 Organo(s-block Metal) Aggregation and Reactivity 2736.2.3 DOSY on s-block Organometallics 2806.2.3.1 Development and Early Applications 2806.2.3.2 Recent Refinements to Diffusion Techniques 2836.3 Heteropolymetallic Systems 2876.3.1 Introduction 2876.3.2 s/s-block Systems 2876.3.2.1 Alkali Metal/Magnesium 2876.3.2.2 Turbo-Hauser Chemistry 2896.3.3 s/p-block Systems 2916.3.3.1 Lithium/Aluminium Chemistry and Trans-metal-trapping 2916.3.3.2 Alkali Metal/Gallium Systems 2936.3.4 s/d-block Systems 2946.3.4.1 Lithium/Cadmium 2946.3.4.2 Lithium/Copper 2956.3.4.3 Alkali Metal/Zinc 3026.3.4.4 Magnesium/Zinc 3086.4 Concluding Remarks 311References 3127 Chemistry of Boryl Anions: Recent Developments 317Makoto Yamashita7.1 Introduction 3177.2 Boryl Anions as a Salt of Alkali Metals 3177.2.1 Early Examples of Base-stabilized Boryl Anions and Borylcopper Species 3177.2.2 Diaminoboryl Anions as a Lithium Salt 3187.2.3 Base-stabilized Boryl Anion with pi-delocalization 3217.2.3.1 Lewis Base-stabilized Borole Anion 3217.2.3.2 Carbene-stabilized Boryl Anion 3227.2.3.3 Stabilization with Cyanide 3237.2.3.4 Metal-substituted Boryl Anion 3257.3 Boryl Anions as a Salt of Magnesium, Zinc, and Copper as Relatives of Carbanions 3257.3.1 Transmetalation of Boryllithium to Magnesium, Copper, and Zinc to Form Borylmetals 3257.3.2 Transmetalation of Diborane(4) to Magnesium and Zinc to Form Borylmetals 3297.4 Application of Borylcopper and Borylzinc Species for Synthetic Organic Chemistry 3307.5 Summary 332References 3338 Novel Chemical Transformations in Organic Synthesis with Ate Complexes 337Keiichi Hirano and Masanobu Uchiyama8.1 Introduction 3378.2 Ate Complexes 3378.3 Di-anion-type Zincate 3388.3.1 Mono-anion-type Zincates and Di-anion-type Zincates 3388.3.2 Highly Bulky Di-anion-type Zincate: Li2[Znt-Bu4] 3398.3.2.1 Halogen-Zinc Exchange in the Presence of Proton Sources 3398.3.2.2 Anionic Polymerization in Water 3408.3.3 Cross-coupling Reaction via C-O Bond Cleavage 3408.4 Heteroleptic Zinc Ate Complexes 3428.4.1 Deprotonative Metalation of Aromatic C-H Bonds 3428.4.1.1 Amidozincate Base: Li[(TMP)ZnR2] 3438.4.1.2 Amidoaluminate Base: Li[(TMP)Ali-Bu3] 3438.4.1.3 Amidocuprate Base: Li2[(TMP)Cu(CN)R] 3458.4.2 Hydridozincate: M[HZnMe2] 3468.4.3 Silylzincates 3488.4.3.1 Silylzincation of Alkynes 3498.4.3.2 Silylzincation of Alkynes via Si-B Activation 3508.4.3.3 Silylzincation of Alkenes (1): Synthesis of Allylsilanes 3508.4.3.4 Silylzincation of Alkenes (2): Synthesis of Alkylsilanes 3508.4.4 Perfluoroalkylzincates Li[RFZnMeCl] and RFZnR 3508.4.5 Design of Boryl Anion Equivalents and Applications in Synthetic Chemistry 3548.4.5.1 Borylzincate: M[(pinB)ZnEt2] 3558.4.5.2 Trans-Diboration of Alkynes via pseudo-Intramolecular Activation 3578.4.5.3 Trans-Alkynylboration of Alkynes 3608.5 Conclusion 360References 3629 Isolable Alkenylcopper Compounds: Synthesis, Structure, and Reaction Chemistry 365Liang Liu, Chao Wang, and Zhenfeng Xi9.1 Introduction 3659.2 Well-defined Alkenylcopper Compounds 3659.2.1 Mono-alkenyl Organocopper Compounds with Intramolecular Coordination 3669.2.2 Mono-alkenyl Organocopper Compounds Stabilized by N-heterocyclic Carbene 3679.2.3 Butadienyl Copper Compounds 3699.3 Summary 379References 380Index 383
Andrew Wheatley, Professor of Materials Chemistry, Yusuf Hamied Department of Chemistry, University of Cambridge, UK. His research is focused on understanding the structure, synthesis and reactivity of mixed-metal organometallics, catalysts and composite materials.Masanobu Uchiyama, Professor, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan, and Professor, Research Initiative for Supra-Materials (RISM) at Shinshu University, Japan (Cross Appointment). His research interests include development of innovative synthetic processes, new materials, and new functions based on integration of theoretical calculations and elements chemistry.
1997-2024 DolnySlask.com Agencja Internetowa