wyszukanych pozycji: 2
![]() |
Sotsiokul'turnaya Evolyutsiya Obrazov Ochelovechennogo Prostranstva
ISBN: 9783659121210 / Rosyjski / Miękka / 2014 / 284 str. Termin realizacji zamówienia: ok. 10-14 dni roboczych. Monografiya posvyashchena sotsiokul'turnoy evolyutsii obrazov ochelovechennogo prostranstva. Avtorom rassmotreny: genezis gorodov, ikh posleduyushchee razvitie i formirovanie mira provintsii. Predstavlennye v monografii materialy dokazyvayut, chto sushchestvuyut opredelyennye zakonomernosti v posledovatel'noy smene odushevlennykh obrazov prostranstva. V khode istoricheskogo razvitiya proiskhodit nalozhenie novykh obrazov na prezhde sushchestvuyushchie obrazy.
Monografiya posvyashchena sotsiokul'turnoy evolyutsii obrazov ochelovechennogo prostranstva. Avtorom rassmotreny: genezis gorodov, ikh posleduyushchee...
|
cena:
370,81 |
![]() |
Property ($T$) for Groups Graded by Root Systems
ISBN: 9781470426040 / Angielski Termin realizacji zamówienia: ok. 30 dni roboczych. The authors introduce and study the class of groups graded by root systems. They prove that if $Phi$ is an irreducible classical root system of rank $geq 2$ and $G$ is a group graded by $Phi$, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of $G$. As the main application of this theorem the authors prove that for any reduced irreducible classical root system $Phi$ of rank $geq 2$ and a finitely generated commutative ring $R$ with $1$, the Steinberg group ${mathrm St}_(R)$ and the elementary Chevalley group $mathbb E_(R)$...
The authors introduce and study the class of groups graded by root systems. They prove that if $Phi$ is an irreducible classical root system of rank $...
|
cena:
328,15 |