ISBN-13: 9783658371135 / Angielski / Miękka / 2022
ISBN-13: 9783658371135 / Angielski / Miękka / 2022
Nowadays, most digital modulation schemes are based on conventional signal constellations that have no algebraic group, ring, or field properties, e.g. square quadrature-amplitude modulation constellations. Signal constellations with algebraic structure can enhance the system performance. For instance, multidimensional signal constellations based on dense lattices can achieve performance gains due to the dense packing. The algebraic structure enables low-complexity decoding and detection schemes. In this work, signal constellations with algebraic properties and their application in spatial modulation transmission schemes are investigated. Several design approaches of two- and four-dimensional signal constellations based on Gaussian, Eisenstein, and Hurwitz integers are shown. Detection algorithms with reduced complexity are proposed. It is shown, that the proposed Eisenstein and Hurwitz constellations combined with the proposed suboptimal detection can outperform conventional two-dimensional constellations with ML detection.