ISBN-13: 9781119631712 / Angielski / Twarda / 2020 / 368 str.
ISBN-13: 9781119631712 / Angielski / Twarda / 2020 / 368 str.
1 Introduction to Essential Fatty Acids 1Alok Patel, Ulrika Rova, Paul Christakopoulos and Leonidas Matsakas1.1 Introduction 21.2 Biosynthesis of PUFAs 41.3 Sources of Essential Fatty Acids and Daily Intake Requirement 51.4 Biological Role of Essential Fatty Acids 71.4.1 Effect on Cell Membrane Structure 71.4.2 Impact on Vision 91.4.3 Brain Function 91.4.4 Biosynthesis of Lipid Mediators 101.4.5 Effect of Omega Fatty Acids on the Regulation of Gene Expression 101.5 Effect of Essential Fatty Acid on Human Health (Disease Prevention and Treatment) 101.5.1 Neonatal Development 101.5.2 Gestation and Pregnancy 111.5.3 Cardiovascular Disease 111.5.4 Cancer Inhibition 121.5.5 Rheumatoid Arthritis 121.5.6 Effect on Suicide Risk in Mood Disorders 121.6 Concluding Remarks 12References 132 Nutraceutical Fatty Acid Production in Marine Microalgae and Cyanobacteria 23Anders K. Nilsson, Carlos Jiménez and Angela Wulff2.1 Introduction 242.2 Fatty Acid Synthesis 262.3 Glycerolipid Synthesis and Lipid Accumulation 302.4 Current LC-PUFA Sources and the Potential Benefits of Using Marine Microalgae 322.5 Nutraceutical Fatty Acids in Marine Microalgae and Species of Interest 352.5.1 alpha-Linolenic Acid (18:3 n-3, Delta9,12,15) 372.5.2 Stearidonic Acid (18:4 n-3, Delta6,9,12,15) 382.5.3 Eicosanoid Acid (EPA, 20:5 n-3, Delta5,8,11,14,17) and Docosahexaenoic Acid (DHA, 22:6 n-3, Delta4,7,10,13,16,19) 382.5.4 Docosapentaenoic Acid (22:5 n-3, Delta7,10,13,16,19) 392.5.5 gamma-Linolenic Acid (18:3 n-6, Delta6,9,12) 402.5.6 Arachidonic Acid (20:4 n-6, Delta5,8,11,14) 412.6 Autotrophic and Heterotrophic Cultivation 422.7 Cultivation from Laboratory to Industrial Scale 432.8 Optimizing Growth Condition to Promote Lipid Accumulation and Desired FA Profiles 482.8.1 Temperature Effect 492.8.2 Irradiance 502.8.3 Growth Rate 522.8.4 Nitrogen and Phosphorous 522.8.5 Co2 532.8.6 Salinity 542.9 Genetic Engineering to Promote Lipid Accumulation and Tailoring of Fatty Acid Profiles 542.10 Conclusions 562.11 Acknowledgements 57References 573 Production of PUFAs as Dietary and Health Supplements from Oleaginous Microalgae Utilizing Inexpensive Renewable Substrates 77Dimitra Karageorgou, Georgios Bakratsas and Petros Katapodis3.1 Introduction 783.2 PUFAs as Dietary and Health Supplements 793.3 Microalgae as Source of PUFAs 823.4 Systems for Microalgal Cultivation 893.5 Use of Alternative Substrates for Microalgal Growth 903.6 Factors that Affect the Heterotrophic and/or Mixotrophic Cultures 973.7 Conclusions 1013.8 Future Perspectives 1013.9 Acknowledgements 102References 1024 Lipid and Poly-Unsaturated Fatty Acid Production by Oleaginous Microorganisms Cultivated on Hydrophobic Substrates 115Markella Tzirita, Bríd Quilty and Seraphim Papanikolaou4.1 Lipid Production (Single Cell Oil) 1164.2 Lipid Biodegradation and Synthesis 1184.3 Hydrophobic Substrates 1224.3.1 Waste Fats, Oils and Grease (FOG) 1224.3.2 Olive-Mill Wastewater (OMW) 1234.4 Oleaginous Microorganisms 1244.5 Conclusions 127References 1365 Overview of Microbial Production of Omega-3-Polyunsaturated Fatty Acid 145Farha Deeba, Kukkala Kiran Kumar and Naseem A. Gaur5.1 Introduction 1455.2 Microbial Sources of omega-3 PUFA 1465.3 omega-3 PUFA Biosynthesis in Microbial Cells 1495.3.1 Aerobic Desaturase and Elongase Pathway 1515.3.2 Anaerobic Polyketide Synthase (PKS) Pathway 1535.4 Factors Affecting omega-3 PUFA Production 1545.4.1 Temperature 1545.4.2 pH 1555.4.3 Aeration 1555.4.4 Media Composition 1555.4.5 Incubation Time 1565.5 Stabilization of omega-3 PUFA 1565.6 Conclusions 157References 1576 Autotrophic Cultivation of Microalgae for the Production of Polyunsaturated Fatty Acid 165Pallavi Saxena, Mukesh Kumar and Harish6.1 Introduction 1656.2 Importance of PUFAs 1706.3 Biosynthesis of PUFA in Autotrophic Algae 1716.4 Harvesting of Algae and Extraction of Fatty Acids 1736.5 Metabolic Engineering Towards Increasing Production of PUFA's by Algae 1756.6 Conclusion 1786.7 Acknowledgement 178References 1787 Production of Omega-3 and Omega-6 PUFA from Food Crops and Fishes 187Km Sartaj and R. Prasad7.1 Introduction 1887.2 PUFA as a Dietary Supplement 1897.2.1 Omega-3 (n-3) Fatty Acids 1897.2.2 Omega-6 (n-6) Fatty Acids 1907.2.3 Health Aspects and Physiological Functions of PUFA 1907.3 Biosynthesis and Metabolism of PUFA 1917.4 Potential Commodities for PUFA Production 1937.4.1 Food Crops 1937.4.1.1 Soybean Seeds 1977.4.1.2 Rapeseed 1977.4.1.3 Safflower 1987.4.1.4 Sesame and Linseed 1987.4.1.5 Sunflower 1987.4.2 Transgenic Plants 1987.4.3 Fishes 1987.4.3.1 Fish Bioecology and Lipid Content 1997.5 Alternate Sources of PUFA 2007.6 Future Avenues 2007.7 Conclusion 203References 2038 The Role of Metabolic Engineering for Enhancing PUFA Production in Microalgae 209Neha Arora8.1 Introduction 2098.2 LC-PUFA Biosynthesis in Microalgae 2128.2.1 Conventional Aerobic Pathway 2128.2.2 Anaerobic Pathway 2148.3 Identification and Characterization of Enzymes Involved in PUFA Synthesis 2148.4 Metabolic Engineering for Enhancing the LC-PUFAProduction in Microalgae 2158.5 Conclusion and Future Perspective 222References 2239 Health Perspective of Nutraceutical Fatty Acids; (Omega-3 and Omega-6 Fatty Acids) 227Sneha Sawant Desai and Varsha Kelkar Mane9.1 Introduction 2289.1.1 Biochemistry of Fatty Acids 2289.1.2 Overview of Fatty Acid Synthesis 2319.1.3 Strategies for PUFA Accumulation in Microalgae 2329.2 Health Benefits of PUFA 2349.2.1 Omega-6 Fatty Acids 2349.2.1.1 Linoleic Acid (LA) 2349.2.1.2 gamma-Linolenic Acid (GLA) 2349.2.1.3 Arachidonic Acid (ARA) 2359.2.2 Omega-3 Fatty Acids 2369.2.2.1 Alpha-Linolenic Acid (ALA) 2369.2.2.2 Stearidonic Acid (SDA) 2379.2.2.3 Docosahexanoic Acid (DHA) 2379.2.2.4 Eicosapentaenoic Acid (EPA) 2399.3 Conclusion 240References 24110 Extraction and Purification of PUFA from Microbial Biomass 249Amit Kumar Sharma, Venkateswarlu Chintala, Praveen Ghodke, Parteek Prasher and Alok Patel10.1 Introduction 25010.2 Biochemical Composition of Microalgae 25110.2.1 Carbohydrates 25110.2.2 Proteins 25210.2.3 Lipids 25210.3 Microalgae as a Source of Polyunsaturated Fatty Acids 25310.4 Composition of PUFAs in Microbial Biomass 25410.5 Methods of Lipid Extraction from Microbial Biomass 25510.5.1 Microalgae Cell Disruption Methods 25610.5.1.1 Mechanical Cell Disruption Methods 25710.5.1.2 Non-Mechanical Cell Disruption Methods 26010.5.2 Lipid Extraction Methods 26010.5.2.1 Mechanical Extraction Method 26110.5.2.2 Solvent Extraction Methods 26110.5.2.3 Green Solvents Extraction Methods 26410.5.2.4 Supercritical Extraction Method 26510.6 Purification and Enrichment of PUFAs 26610.6.1 Low-Temperature Crystallization Enrichment 27010.6.2 Urea Complexation 27010.6.3 Distillation Method 27110.6.4 Enzymatic Purification 27110.6.5 Chromatographic Separation 27210.6.6 Supercritical Fluid Fractionation (SFF) 27310.7 Concluding Remarks 273References 27411 Market Perspective of EPA and DHA Production from Microalgae 281Jyoti Sharma, Pampi Sarmah and Narsi R Bishnoi11.1 Introduction 28111.2 Categories of Omega-3 Fatty Acids and Their Health Benefits 28311.3 Brain Development 28411.4 Cardiovascular Diseases 28511.5 Present Sources of Omega-3 PUFAs 28611.6 Why Microalgae? 28711.7 Factors Affecting Growth and Fatty Acid Composition of Microalgae 28911.8 Algal Oil Extraction, Purification and Its Refining Techniques 29111.9 Microalgae as a Boon for Long-Chain Omega-3 PUFAs 292References 29412 Oleaginous Microalgae - A Potential Tool for Biorefinery-Based Industry 299Riti Thapar Kapoor12.1 Introduction 29912.2 Industrial Applications of Microalgae 30212.3 Use of Microalgae as Biofertilizer 30212.4 Microalgae as a Food Component 30312.5 Microalgae as a Nutraceutical 30312.6 Pigments and Carotenoids 30412.7 Phycobilins 30512.8 Fatty Acids 30512.9 Animal Nutrition 30612.10 Safety Related Issues Related to Microalgal Nutraceuticals 30712.11 Application in Pharmaceutical Industry 30712.12 Utilization of Microalgae in Cosmetics Production 30812.13 Microalgal Application in Wastewater Treatment 30812.14 Factors Affecting Lipid Production in Microalgae 30912.14.1 Light Intensity 30912.14.2 Temperature 30912.14.3 Nutrient Availability 31012.14.4 Salinity Stress 31012.14.5 Metal Stress 31312.15 Application of Microalgae in Biofuel Production 31312.15.1 Advantages of Using Microalgae for Biofuel Production 31312.16 Biodiesel 31512.17 Biogas 31512.18 Hydrogen 31512.19 Biosyngas 31612.20 Ethanol 31612.21 Cultivation of Microalgae for Biofuel Production 31612.21.1 Open Microalgal System 31612.21.2 Closed Microalgal System 31712.21.3 Hybrid Microalgal System 31712.22 Current Research Status in India 31712.23 Concluding Remarks and Future Prospectives 31812.24 Acknowledgements 318References 318Index 331
Alok_Kumar_Patel,_PhD,_is_working_as_a_senior_researcher_in_Biochemical_Process_Engineering,_Luleå_University_of_Technology,_Lulea,_Sweden_to_produce_nutraceuticals_from_oleaginous_microalgae_He_finished_his_master's_degree_in_biotechnology_in_2011_and_joined_as_a_research_assistant_in_Food_Borne_Infection_Surveillance_Unit,_Global_Disease_Detection_India_Center_CDC,_USA_in_collaboration_with_National_Center_for_Disease_Control,_Ministry_of_Health_&_Family_Welfare,_Government_of_India_He_got_his_PhD_in_Biotechnology_from_IIT_Roorkee_in_2017_His_research_interest_is_mainly_focused_on_the_development_of_biotechnological_processes_for_conversion_of_organic_matter_to_bioenergy,_biofuels_and_biochemicals,_process_optimization,_pretreatment_of_biomass,_nutraceuticals_and_value-added_products_from_microorganisms,_and_biorefineriesLeonidas_Matsakas,_PhD,_is_working_as_an_assistant_professor_in_the_Biochemical_Process_Engineering_group_at_Luleå_University_of_Technology_He_received_his_PhD_in_Biotechnology_from_the_school_of_Chemical_Engineering_at_National_Technical_University_of_Athens_in_2015_After_that,_he_joined_the_Biochemical_Process_Engineering_group_of_LTU_as_postdoc_fellow_and_later_became_senior_lecturer_at_the_same_group_His_research_interest_is_focused_on_developing_biomass_biorefinery_processes,_inclusing_establishing_novel_pretreatment_and_fractionation_technologies_for_the_fractionation_of_lignocellulosic_biomass_to_cellulose,_hemicellulose_and_lignin_and_the_conversion_of_these_streams_to_biofuels,_biobased_chemicals_and_biomaterials_via_biochemical_and_thermochemical_routes
1997-2024 DolnySlask.com Agencja Internetowa