ISBN-13: 9783642812583 / Angielski / Miękka / 2012 / 470 str.
ISBN-13: 9783642812583 / Angielski / Miękka / 2012 / 470 str.
With contributions by numerous experts
Volume IV B.- 10 — Perfusion of Isolated Mammalian Renal Tubules.- A. Introduction.- B. Experimental Techniques: Practical and Theoretical Considerations.- I. Isolation of Renal Tubule Segments.- II. Tubular Perfusion.- III. Perfusing and Bathing Solutions.- IV. Measurement of Net Volume Absorption.- 1. Collection Method.- 2. Crimped-End Method.- V. Assessment of Hydraulic Conductivity.- 1. The Unstirred Layer Problem.- 2. The Hydraulic Conductivity Coefficient.- VI. Electrical Measurements.- 1. Liquid Junction Potentials and Donnan Voltages.- 2. Ionic Dilution Potentials.- 3. Measurement of Transepithelial Resistance.- VII. Tracer Flux Measurements.- 1. Unidirectional Lumen-to-Bath Fluxes.- 2. Unidirectional Bath-to-Lumen Fluxes.- 3. Evaluating PDi From Tracer Fluxes.- 4. Transmembrane Fluxes.- C. Transport Properties of Isolated Nephron Segments.- I. Suitability of the In-Vitro Preparation.- II. The Proximal Tubule.- 1. Dissipative Transport Properties.- 2. Active Transport Processes.- 3. Mechanismus for Salt and Water Transport in the Superficial Pars Recta.- 4. Effective Luminal Hypotonicity and Isotonic Fluid Absorption.- 5. Heterogeneity of Tubular Structure and Function.- III. The Loop of Henle.- IV. The Distal Convoluted Tubule and Collecting Duct System.- 1. Distal Convoluted Tubule.- 2. Cortical Collecting Tubule.- 3. Water and Nonelectrolyte Permeation in the Cortical Collecting Duct: the Mechanism of ADH Action.- References.- 11 — Metabolic Correlates of Tubular Transport.- A. Introduction.- B. Transport-Related Parameters of Metabolic Activity in Intact Cells.- I. General Aspects.- II. Heat Production in the Kidney.- III. O2 Consumption and CO2 Production in the Kidney.- IV. Effect of Metabolic Inhibitors on the Transepithelial Transport of Sodium.- V. Renal Substrate Metabolism in Relation to Renal Function.- 1. Uptake and Oxidation of Substrates in Relation to Sodium Transport.- 2. Substrate Dependence of Sodium Transport in Isolated Systems.- C. Transport-Related Intracellular Parameters of Metabolic Activity.- I. Determination of Enzyme Activities.- II. Determination of ATP Content and ATP Turnover.- III. ATP Content and ?-Aminoisobutyric Acid Transport in Kidney Cortex Slices.- D. Energetics of Transport as Studied with Isolated Renal Plasma Membranes.- I. General Aspects.- II. Transport-Related ATP Hydrolases.- 1. Sodium.- 2. Calcium.- a) Properties of Renal Ca++-Activated ATPases.- b) Possible Relation of Ca++-ATPase to Transepithelial Ca++ Transport.- 3. Bicarbonate and Protons.- 4. Chloride.- III. Sodium-Solute Cotransport Systems.- 1. General Aspects.- 2. General Characteristics of Transport by Renal Vesicles.- 3. The Sodium Gradient as the Driving Force of Intravesicular Accumulation.- 4. The Electrical Membrane Potential as the Driving Force of Intravesicular Accumulation.- 5. Energetics of Transcellular Transport in the Proximal Convoluted Tubule.- Acknowledgements.- References.- 12 — Transport in Salivary and Salt Glands.- I: Salivary Glands.- A. Introduction.- B. Anatomy and Anatomical Terminology.- I. Secretory Endpieces.- II. The Duct System.- III. Myoepithelial Cells.- C. Transport of Water and Electrolytes.- I. Theories of Secretion of Water and Electrolytes by Salivary Glands.- II. Formation of the Primary Saliva.- 1. Evidence Concerning the Site or Sites of Fluid Secretion by Salivary Glands.- 2. Control of Secretion and Innervation of Endpieces.- 3. Composition of the Primary Secretion.- a) Osmotic Activity.- b) Electrolyte Concentrations.- i) Bicarbonate.- ii) Sodium.- iii) Potassium.- iv) Chloride.- c) Organic Solutes.- 4. The Unstimulated Endpiece Cell.- 5. The Stimulated Endpiece Cell.- a) Receptors and Receptor Pharmacology.- b) The Secretory Potential and Associated Ionic Fluxes.- i) Cholinergic Stimulation.- ii) Adrenergic Stimulation.- iii) Transients.- c) Stimulus-Secretion Coupling. Calcium Ions and Cyclic Nucleotides.- i) Mediation of ?-Adrenergic and Cholinergic Responses.- ii) Mediation of ?-Adrenergic Responses.- 6. Isotonic Fluid Transport.- III. Ductal (Secondary) Modification of the Primary Secretion.- 1. Flow Rate and Electrolyte Excretion Patterns in Final Saliva.- a) Parasympathetic and Parasympathomimetic Stimulation.- i) Sodium.- ii) Potassium.- iii) Bicarbonate.- b) Sympathetic and Sympathomimetic Stimulation.- c) Excretory Patterns for Calcium, Magnesium and Phosphate.- i) Calcium.- ii) Magnesium.- iii) Phosphate.- 2. Micropuncture and Perfusion Studies of Salivary Duct Function.- a) Permeability Properties of Salivary Ducts.- i) Sodium.- ii) Potassium.- iii) Anions.- iv) Water and Urea.- b) Active Transport and Carrier-Mediated Passive Transport by Salivary Ducts.- i) Minimum Requirements for Maintenance of Active Transport.- ii) Sodium Reabsorption.- iii) Potassium Secretion.- iv) Transport of Bicarbonate or Protons.- c) A Transport Model for the Duct Epithelium.- 3. Innervation and Autonomic Control of Ductal Transport.- 4. Endocrine Control of Ductal Transport.- a) Mineralocorticoids.- b) Angiotensin.- c) Gastrointestinal Polypeptide Hormones and Related Substances.- 5. Relative Roles of Granular, Striated, and Excretory Ducts in Saliva Formation.- D. Transport of Proteins.- I. Transport of Albumin.- II. Transport of Immunoglobulin A (IgA).- III. Transport of Secretory Proteins.- 1. Uptake of Amino Acids into Secretory Cells.- 2. Intracellular Transport.- 3. Discharge of Secretion Granules.- IV. Control of Protein Secretion.- 1. Control of Amylase Release.- 2. Control of Mucoprotein Release.- 3. Protein Secretion by Rodent Granular Duct Cells.- References.- II: Salt Glands.- A. Introduction.- B. Structure of Salt Glands.- I. Microanatomy.- II. Ultrastructure.- C. Adaptation to Salt Loading.- D. Neural and Hormonal Control of Salt Gland Secretion.- E. Flow Rates and Electrolyte Concentrations.- F. The Mechanism of Salt Secretion by the Tubular Endpiece.- G. The Role of the Duct System.- Acknowledgements.- References.- 13 -Gastric Secretion.- A. Introduction.- B. Morphological Features of Gastric Mucosa.- I. Histology.- II. Ultrastructure of the Oxyntic Cell.- C. Ion Transport.- I. General.- II. H+Secretion.- 1. Locus of H+Secretion.- 2. Acid-Base Balance of Oxyntic Cells.- 3. Anion Dependence of H+Secretion.- 4. Cation Dependence of H+ Secretion.- III. Cl-Transport.- 1. Active Transport.- 2. Exchange Diffusion.- IV. Na+Absorption.- D. Water Transport.- I. Introduction.- II. Diffusional Permeability to Water.- III. Hydraulic Conductivity.- IV. Water Flow During Secretion.- 1. Hydrostatic Pressure and Ultrafiltration.- 2. Endogenous HC1 Gradients and Water Secretion.- E. Electrophysiological Analyses of Gastric Transport.- I. Electrogenic vs. Electroneutral H+and Cl-Pumps.- 1. The Electrogenic Hypothesis.- 2. The Electroneutral Hypothesis.- 3. Conclusions.- II. Intracellular PDs.- III. Permeability and Conductance Pathways.- 1. Transcellular and Paracellular Conductances.- 2. Cell Membrane Permeability Characteristics.- IV. Black Box Model of Gastric Mucosa.- F. Biochemical Basis of Gastric HC1 Secretion.- I. Metabolic Requirements.- II. Redox Hypotheses.- III. ATP Utilization Hypotheses.- IV. The Search for Gastric ATPases.- 1. HCO-3-Stimulated ATPase.- 2. (Na+ + K+)-ATPase.- 3. K+-Stimulated ATPase.- V. Transport Properties of Gastric Microsomal Vesicles.- Acknowledgements.- References.- 14 -Transport Across Small Intestine.- A. Introduction.- B. The Paraeellular Pathway.- I. Permeability to Ions.- II. Permeability to Nonelectrolytes.- III. Electrophysiologic Implications.- C. Active Sodium Transport.- I. Paracellular Na Transport.- II. Transcellular Na Transport.- D. Relations Between Sodium Transport and the Transport of Other Solutes.- I. Na-Coupled Sugar and Aminoacid Transport.- II. Na-Coupled Cl Transport.- E. Summary.- References.- 15 -Transport in Large Intestine.- A. Introduction.- B. Water and Electrolyte Transport.- I. Epithelial Properties.- II. Sodium, Chloride, and Bicarbonate Transport.- III. Potassium Transport.- IV. Intestinal Secretion.- V. Hormones and Electrolyte Transport.- C. Weak Electrolyte Transport (Ammonia and Volatile Fatty Acids).- I. Nonionic Diffusion.- II. Colonic Transport.- III. Transport Models Based on the Small Intestine.- D. Conclusion.- Acknowledgements.- References.- 16 -Transport Processes in the Exocrine Pancreas.- A Introduction.- B. Secretion of Electrolytes and Water.- I. Stimulatory Processes.- II. Fluid Secretion and Ionic Requirement.- III. Flow-Dependent Concentration Pattern in the Secreted Fluid.- IV. Local Transport Events as Revealed by Micropuncture and Microperfusion Techniques.- 1. Electrolytes and Water.- 2. Electrical Potential Differences.- V. Mechanism of Ion Secretion.- 1. Buffer Secretion.- a) What Buffer Components in the Perfusate Determine Buffer and Fluid Secretion.- b) Sidedness of the Buffer Transport.- 2. Secretion of Na+ Ions.- 3. Possible Mechanism of Buffer Secretion.- C. Secretion of Enzymes.- I. Transport Processes in the Acini Involved in Stimulus-Secretion Coupling.- 1. Secretagogues of Enzyme Secretion.- 2. Electrophysiological Measurements.- 3. Role of Calcium Ions.- II. Role of Cyclic AMP and Cyclic GMP in Stimulus-Secretion Coupling.- III. Ca++and Exocytosis of Secretory Granules.- IV. Role of Microfilaments and Microtubules.- D. Uptake of Amino Acids Used for Enzyme Synthesis.- Acknowledgements.- References.- 17 -Transport in Gallbladder.- A. Introduction.- B. General Transport Properties.- I. Morphology of the Gallbladder.- II. Composition of Gallbladder Bile.- III. General Characteristics of Salt and Water Transport.- 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid.- 2. Water Transport and Transmural Osmotic Gradients.- 3. Metabolic and Pharmacologic Aspects of Transport.- C. Mechanisms of Ion Transport.- I. Black-Box Electrical Properties of the Gallbladder.- 1. The Transepithelial Potential Difference.- 2. The Transepithelial Electrical Resistance.- 3. Overall Transepithelial Ionic Permeabilities.- II. Demonstration of the Existence of a Paracellular Shunt Pathway.- 1. Electrophysiological Evidence.- 2. Morphological Evidence.- III. Properties of the Shunt Pathway.- 1. Physicochemical Characteristics of the Paracellular Pathway.- a) Charge of the Pathway.- b) Mobility of the Sites.- c) Evidence for a Free-Solution Parallel Pathway.- d) Effects of pH and Polyvalent Cations.- e) Permeation of Nitrogenous Cations.- 2. Role of the Lateral Intercellular Spaces in Passive Ion Permeation.- IV. Properties of the Epithelial Cell Membranes.- 1. Electrophysiological Studies.- a) Equivalent Circuit for Gallbladder Epithelium.- b) Ionic Permeability of the Apical Membrane.- c) Ionic Permeability of the Basolateral Membrane.- 2. Tracer Analysis of Electrolyte Transport.- 3. Role of the Lateral Intercellular Spaces in Ion Transport.- 4. Relative Contributions of Cell Membranes and Shunt Pathway to Transepithelial Potential and Transepithelial Resistance Changes.- a) Estimation of Shunt Ion Permeability Ratios from Transepithelial Measurements.- b) Estimation of Cell Membrane Ion Permeability Ratios from Changes in Cell Membrane Potential.- c) Effects of Transepithelial Osmotic Gradients on Potentials and Resistances.- d) Effects of Transepithelial Current Pulses on Potentials and Resistances.- e) Effects of Amphotericin B on Potentials and Resistances.- D. Transport of Nonelectrolytes.- E. Water Transport.- 1. Local Osmosis Hypotheses.- a) Three-Compartment Hypothesis.- b) Standing-Gradient Osmotic Flow Hypothesis.- c) Hypertonic Interspace Mechanisms with Leaky Junctions and Distributed Solute Input.- d) Influence of Transport-Dependent Asymmetries in Fluid Composition.- 2. Magnitude of the Hydraulic Conductivity of the Gallbladder.- 3. Route of Water Flow.- Acknowledgements.- References.- 18 -Transport of Ions in Liver Cells.- A. Introduction.- B. Ionic Concentrations and Activities.- C. Membrane Potential.- D. Passive Fluxes.- I. Distribution of Ions.- II. Diffusion Fluxes.- III. Facilitated Diffusion.- 1. Ouabain-Insensitive Sodium Exchange.- 2. Ouabain-Sensitive Sodium Exchange.- 3. Potassium-Facilitated Diffusion.- IV. Factors Affecting Sodium, Potassium, and Chloride Permeabilities.- 1. Effect of Calcium on Permeability.- a) Presumed Effect of Calcium on Permeability of Junctional Membrane.- b) Effect of External Calcium on Permeability.- c) Effect of Internal Calcium on Permeability.- 2. Effect of Foreign Anions on Membrane Permeability.- 3. Effect of Temperature on Permeability.- E. Active Transport of Sodium and Potassium.- I. Ouabain-Sensitive Fluxes.- II. Coupling Between Sodium and Potassium Movements.- III. Stoichiometry of the Sodium-Potassium Pump.- 1. Coupling Ratio Between Sodium and Potassium Fluxes.- 2. Cation/ATP Ratio.- IV. Contribution of the Electrogenic Sodium Pump to Membrane Potential.- V. Energy Requirement for Sodium-Potassium Transport.- 1. Measured Energy Requirement.- 2. Theoretical Energy Requirement.- F. Regulation of Cell Volume.- G. Calcium Transport.- Acknowledgements.- References.
1997-2024 DolnySlask.com Agencja Internetowa