• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

The Spectrum of Hyperbolic Surfaces » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

The Spectrum of Hyperbolic Surfaces

ISBN-13: 9783319276649 / Angielski / Miękka / 2016 / 383 str.

Nicolas Bergeron
The Spectrum of Hyperbolic Surfaces Nicolas Bergeron 9783319276649 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

The Spectrum of Hyperbolic Surfaces

ISBN-13: 9783319276649 / Angielski / Miękka / 2016 / 383 str.

Nicolas Bergeron
cena 282,42 zł
(netto: 268,97 VAT:  5%)

Najniższa cena z 30 dni: 269,85 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called "arithmetic hyperbolic surfaces," the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Geometria Nie Euklidesowa
Mathematics > Mathematical Analysis
Mathematics > Równania różniczkowe
Wydawca:
Springer
Seria wydawnicza:
Universitext
Język:
Angielski
ISBN-13:
9783319276649
Rok wydania:
2016
Wydanie:
2016
Numer serii:
000024642
Ilość stron:
383
Waga:
0.60 kg
Wymiary:
16.0 x 23.9 x 2.2
Oprawa:
Miękka
Wolumenów:
01

"The French book under review gives an introduction to hyperbolic surfaces with an emphasis on the Selberg conjecture. ... it is intended for advanced graduate students but is also well suited for all those who want to acquaint themselves with harmonic analysis on hyperbolic surfaces and automorphic forms." (Frank Monheim, zbMATH, August, 2017)

"This book gives a very nice introduction to the spectral theory of the Laplace-Beltrami operator on hyperbolic surfaces of constant negative curvature. ... mainly intended for students with a knowledge of basic differential geometry and functional analysis but also for people doing research in other domains of mathematics or mathematical physics and interested in the present day problems in this very active field of research. ... book gives one of the best introductions to this fascinating field of interdisciplinary research." (Dieter H. Mayer, Mathematical Reviews, August, 2017)

Preface.- Introduction.- Arithmetic Hyperbolic Surfaces.- Spectral Decomposition.- Maass Forms.- The Trace Formula.- Multiplicity of lambda1 and the Selberg Conjecture.- L-Functions and the Selberg Conjecture.- Jacquet-Langlands Correspondence.- Arithmetic Quantum Unique Ergodicity.- Appendices.- References.- Index of notation.- Index.- Index of names.

Nicolas Bergeron is a Professor at Université Pierre et Marie Curie in Paris. His research interests are in geometry and automorphic forms, in particular the topology and spectral geometry of locally symmetric spaces.  

This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them.

After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss.

The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia