ISBN-13: 9781119409168 / Angielski / Twarda / 2020 / 1264 str.
ISBN-13: 9781119409168 / Angielski / Twarda / 2020 / 1264 str.
Volume IPreface xvAcknowledgments xviList of contributors xviiSection 11.1 General introduction 3Frans J. de BruijnSection 2: Overview chapters 72.1 A snapshot of functional genetic studies in Medicago truncatula 9Yun Kang, Minguye Li, Senjuti Sinharoy, and Jerome Verdier2.2 Medicago truncatula as an ecological evolutionary and forage legume model: new directions forward 31Eric J.B. von Wettberg, Jayanti Muhkerjee, Ken Moriuchi, and Stephanie S. PorterSection 3: Medicago truncatula plant development 413.1 Seed development: introduction 43Frans J. de Bruijn3.1.1 A physiological perspective of late maturation processes and establishment of seed quality in Medicago truncatula seeds 44Jerome Verdier, Olivier Leprince, and Julia Buitink3.1.2 Medicago truncatula an informative model to investigate the DNA damage response during seed germination 55Anca Macovei, Andrea Pagano, Chiara Forti, Susana Araújo, and Alma Balestrazzi3.1.3 Transcriptional networks in early Medicago truncatula embryo development 61Ray J. Rose3.1.4 Embryo development and the oil and protein bodies in Medicago truncatula 71Youhong Song, Xin-Ding Wang, Nathan Smith, Simon Wheeler, and Ray J. Rose3.1.5 Role of thioredoxins and NADP-thioredoxin reductases in legume seeds and seedlings 80Françoise Montrichard, Pierre Frendo, Pascal Rey, and Bob Buchanan3.1.6 Seed shape quantification in the model legumes: methods and applications 92Emilio Cervantes, Ezzeddine Saadaoui, Ángel Tocino, and José Javier Martín Gómez3.1.7 The underlying processes governing seed size plasticity: impact of endoploidy on seed coat development and cell expansion in Medicago truncatula 99S. Ochatt and M. Abirached-Darmency3.2 Root development: introduction 117Frans J. de Bruijn3.2.1 Nitrate signaling pathway via the transporter MtNPF6.8 involves abscisic acid for the regulation of primary root elongation in Medicago truncatula 118Anis M. Limami and Marie-Christine Morère Le Paven3.2.2 SCARECROW and SHORT-ROOT show an overlapping expression pattern in the Medicago truncatula nodule central meristem 125Henk J. Franssen, Olga Kulikova, Xi Wan, Auke Adams, and Renze Heidstra3.2.3 Lateral root formation and patterning in Medicago truncatula 130Sandra Bensmihen3.2.4 Modulation of root elongation by abscisic acid and LATERAL ROOT ORGAN DEFECTIVE/NUMEROUS INFECTIONS AND POLYPHENOLICS via reactive oxygen species in Medicago truncatula 136Jeanne M. Harris and Chang Zhang3.2.5 FYVE and PH protein domains present in MtZR1 a PRAF protein modulate the development of roots and symbiotic root nodules of Medicago truncatula via potential phospholipids signaling 144Julie Hopkins, Olivier Pierre, Pierre Frendo, and Eric Boncompagni3.3 Leaf development: introduction 153Frans J. de Bruijn3.3.1 Compound leaf development in Medicago truncatula 154Rujin Chen3.3.2 Mechanistic insights into STENOFOLIA mediated leaf blade outgrowth in Medicago truncatula 173Fei Zhang, Hui Wang, and Million Tadege3.4 Flower development: introduction 181Frans J. de Bruijn3.4.1 Genetic control of flowering time in legumes 182James L. Weller, Richard C. Macknight3.4.2 Forward and reverse screens to identify genes that control vernalization and flowering time in Medicago truncatula 189Mauren Jaudal, Geoffrey Thomson, Lulu Zhang, Chong Che, Jiangqi Wen, Kirankumar S. Mysore, Million Tadege, and Joanna Putterill3.4.3 MtNAM regulates floral organ identity and lateral organ separation in Medicago truncatula 197Xiaofei Cheng, Jianling Peng, Rujin Chen, Kirankumar S. Mysore, and Jiangqi WenSection 4: Biosynthesis of natural products: introduction 2074.1 Organization and regulation of triterpene saponin biosynthesis in Medicago truncatula 209Jan Mertens and Alain Goossens4.2 Saponins in Medicago truncatula: structures and activities 220Catherine Sivignon, Isabelle Rahioui, and Pedro da Silva4.3 Saponin synthesis in Medicago truncatula plants: CYP450-mediated formation of sapogenins in the different plant organs 225Maria Carelli, Massimo Confalonieri, Aldo Tava, Elisa Biazzi, Ornella Calderini, Pamela Abbruscato, Maria Cammareri, and Carla ScottiSection 5: Stress and Medicago truncatula 2375.1 Abiotic stress: introduction 239Frans J. de Bruijn5.1.1 Genomic and transcriptomic basis of salinity adaptation and transgenerational plasticity in Medicago truncatula 240Maren L. Friesen5.1.2 Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula 243Ruicai Long, Fan Zhang, Tiejun Zhang, Junmei Kang, and Qingchuan Yang5.1.3 Rhizobial symbiosis influences response to early salt and drought stress of the Medicago truncatula root proteome 253Reinhard Turetschek, Christiana Staudinger, and StefanieWienkoop5.1.4 Deciphering the role of the alternative respiration under salt stress in Medicago truncatula 261Nestor F Del-Saz, Francisco Palma, Jose Antonio Herrera-Cervera, and Miquel Ribas-Carbo5.1.5 Effect of arsenic on legumes: analysis in the model Medicago truncatula-Ensifer interaction 268Eloísa Pajuelo, Ignacio D. Rodríguez-Llorente, and Miguel A. Caviedes5.1.6 Dual oxidative stress control involving antioxidant defense system and alternative oxidase pathways within the model legume Medicago truncatula under biotic and abiotic constraints 281Haythem MhadhbiSection 5.2: Biotic stress: interaction of Medicago truncatula with pathogens and pests 2895.2.1 Interaction with root and foliar pathogens: introduction 291Frans J. de Bruijn5.2.1.1 Medicago truncatula and other annual Medicago spp. - interactions with root and foliar fungal oomycete and viral pathogens 293Martin J. Barbetti, Ming Pei You, and Roger A.C. Jones5.2.1.2 Deciphering resistance mechanisms to the root rot disease of legumes caused by Aphanomyces euteiches with Medicago truncatula genetic and genomic resources 307Christophe Jacquet and Maxime Bonhomme5.2.1.3 Medicago truncatula as a model organism to study conserved and contrasting aspects of symbiotic and pathogenic signaling pathways 317Aleksandr Gavrin and Sebastian Schornack5.2.1.4 Tools and strategies for genetic and molecular dissection of Medicago truncatula resistance against Fusarium wilt disease 331Louise F. Thatcher, Brendan N. Kidd, and Karam B. Singh5.2.1.5 Medicago truncatula as a model host for genetic and molecular dissection of resistance to Rhizoctonia solani 340Jonathan P. Anderson, Brendan N. Kidd, and Karam B. Singh5.2.1.6 Phosphorus control of plant interactions with mutualistic and pathogenic microorganisms: a mini-review and a case study of the Medicago truncatula B9 mutant 346Elise Thalineau, Carine Fournier, Sylvain Jeandroz, and Hoai-Nam Truong5.2.1.7 The Medicago truncatula-Ralstonia solanacearum pathosystem opens up many research perspectives 355Fabienne Vailleau5.2.2 Aphid stress: introduction 362Frans J. de Bruijn5.2.2.1 Medicago truncatula-aphid interactions 363Lars G. Kamphuis, Ling-Ling Gao, Colin G.N. Turnbull, and Karam B. Singh5.2.2.2 Medicago truncatula-pea aphid interaction in the context of global climate change 369Yucheng Sun, Huijuan Guo, and Feng Ge5.2.3 Interactions with other pathogens and parasites: introduction 377Frans J. de Bruijn5.2.3.1 Characterization of defense mechanisms to parasitic plants in the model Medicago truncatula 378M. Ángeles Castillejo, Mónica Fernández-Aparicio, and Diego Rubiales5.2.3.2 Medicago truncatula host/nonhost legume rust interactions 384Maria Carlota Vaz Patto and Diego Rubiales5.2.3.3 Medicago truncatula as a model to study powdery mildew resistance 390Nicolas Rispail, Elena Prats, and Diego Rubiales5.2.3.4 Antifungal defensins from Medicago truncatula: structure-activity relationships modes of action and biotech applications 398Siva L.S. Velivelli, Kazi T. Islam, and Dilip M. Shah5.2.3.5 Leaf me alone: Medicago truncatula defenses against foliar lepidopteran herbivores 409Jacqueline C. BedeSection 6: The Medicago truncatula-Sinorhizobium meliloti symbiosis 4296.1 Symbiotic nitrogen fixation: introduction 431Frans J. de Bruijn6.2 Signaling and early infection events in the rhizobium-legume symbiosis: introduction 432Frans J. de Bruijn6.2.1 The role of the flavonoid pathway in Medicago truncatula in root nodule formation. A review 434Ulrike Mathesius6.2.2 Expression and function of the Medicago truncatula lysin motif receptor-like kinase (LysM-RLK) gene family in the legume-rhizobia symbiosis 439Jean-Jacques Bono, Judith Fliegmann, Clare Gough, and Julie Cullimore6.2.3 Nod factor hydrolysis in Medicago truncatula: signal inactivation or formation of secondary signals? 448Jie Cai, Ru-Jie Li, Yi-Han Wang, Zhi-Ping Xie, and Christian Staehelin6.2.4 The Medicago truncatula E3 ubiquitin ligase PUB1 negatively regulates rhizobial and arbuscular mycorrhizal symbioses through its ubiquitination activity 453Tatiana Vernié, Malick Mbengue, and Christine Hervé6.2.5 Encoding nuclear calcium oscillations in root symbioses 461Aisling Cooke and Myriam CharpentierSection 7: Symbiosis of Medicago truncatula with arbuscular mycorrhiza 4677.1 Signaling and infection events in the arbuscular mycorrhiza-Medicago truncatula symbiosis: introduction 469Frans J. de Bruijn7.1.1 The symbiosis of Medicago truncatula with arbuscular mycorrhizal fungi 471Nazli Merve Dursun, Eva Nouri, and Didier Reinhardt7.1.2 Role of phytohormones in arbuscular mycorrhiza development 485Debatosh Das and Caroline Gutjahr7.1.3 Laser microdissection of arbuscular mycorrhiza 501Erik Limpens7.1.4 Truncated arbuscules formed in the Medicago truncatula mutant MtHA1 maintain mycorrhiza-induced resistance 513Haoqiang Zhang and Philipp FrankenSection 8: The common symbiotic signaling pathway (CSSP or SYM) 5218.1 The common symbiotic signaling pathway 523Frédéric Debellé8.2 Contribution of model legumes to knowledge of actinorhizal symbiosis 529Didier Bogusz and Claudine Franche8.3 DELLA proteins are common components of the symbiotic rhizobial and mycorrhizal signaling pathways 537Qiujin Xie and Ertao WangVolume IIPreface xvAcknowledgments xviList of contributors xviiSection 9: Infection events in the Rhizobium-legume symbiosis 5439.1 Genes induced during the rhizobial infection process: introduction 545Frans J. de Bruijn9.1.1 Comparative analysis of tubulin cytoskeleton rearrangements in nodules of Medicago truncatula and Pisum sativum 547Viktor E. Tsyganov, Anna B. Kitaeva, and Kirill N. Demchenko9.1.2 Post-transcriptional reprogramming during root nodule symbiosis 554Mauricio Alberto Reynoso, Soledad Traubenik, Karen Hobecker, Flavio Blanco, and María Eugenia Zanetti9.1.3 MtKNOX3 - a possible regulator of cytokinin pathway during nodule development in Medicago truncatula 563M. Azarakhsh, Maria A. Lebedeva, and L.A. Lutova9.1.4 Features of Sinorhizobium meliloti exopolysaccharide succinoglycan required for successful invasion of Medicago truncatula nodules 571Kathryn M. Jones9.1.5 Infection thread development in model legumes 579Daniel J. Gage9.2 Rhizobial release symbiosomes and bacteroid formation: introduction 589Frans J. de Bruijn9.2.1 The Defective in Nitrogen Fixation genes of Medicago truncatula reveal key features in the intracellular association with rhizobia 591Xiaoyi Wu and Dong Wang9.2.2 Terminal bacteroid differentiation in the Medicago-Rhizobium interaction - a tug of war between plant and bacteria 600Andreas F. Haag and Peter Mergaert9.2.3 More than antimicrobial: nodule cysteine-rich peptides maintain a working balance between legume plant hosts and rhizobia bacteria during nitrogen-fixing symbiosis 617Huairong Pan9.2.4 Functional dissection of Medicago truncatula NODULES WITH ACTIVATED DEFENSE 1 in maintenance of rhizobial endosymbiosis 627Haixiang Yu, Chao Wang, Liuyang Cai, Bei Huang, and Zhongming Zhang9.2.5 Which role for Medicago truncatula non-specific lipid transfer proteins in rhizobial infection? 637Chiara Santi, Barbara Molesini, and Tiziana Pandolfini9.2.6 Syntaxin MtSYP132 defines symbiotic membranes in Medicago truncatula root nodules 645Madhavi Avadhani, Christina M. Catalano, and D. Janine Sherrier9.3 Nodule and bacteroid functioning: introduction 650Frans J. de Bruijn9.3.1 Metal transport in Medicago truncatula nodule rhizobia-infected cells 652Isidro Abreu, Viviana Escudero, Jesús Montiel, Rosario Castro-Rodríguez, and Manuel González-Guerrero9.3.2 Inhibition of glutamine synthetase leads to a fast transcriptional activation of defense responses in root nodules 665Ana Rita Seabra and Helena Carvalho9.3.3 Complex dynamics and synchronization of N-feedback and C alteration in the nodules of Medicago truncatula under abundant N or sub-optimal P supply 674Saad Sulieman9.4 Bacteroid senescence: introduction 681Frans J. de Bruijn9.4.1 Involvement of proteases during nodule senescence in leguminous plants 683Li Yang, Camille Syska, Isabelle Garcia, Pierre Frendo, and Eric Boncompagni9.4.2 Senescence of Medicago truncatula root nodules: NO balance 694Pauline Blanquet, Claude Bruand, and Eliane Meilhoc9.4.3 Medicago truncatula ESN1 a key regulator of nodule senescence and symbiotic nitrogen fixation 701Yuhui Chen, Jiejun Xi, and Rujin Chen9.5 Structure of indeterminate Medicago truncatula nodules: introduction 706Frans J. de Bruijn9.5.1 Development and structures of the meristems of roots and indeterminate nodules: introduction 708Frans J. de Bruijn9.5.1.1 Organization and ultrastructure of Medicago truncatula root apical meristem 709Monika SkawiDska, Izabela SaDko-Sawczenko, Dominika Dmitruk,Weronika Czarnocka, and Barbara Aotocka9.5.1.2 Organization and ultrastructure of Medicago truncatula root nodule meristem 726Monika SkawiDska, Izabela SaDko-Sawczenko, Weronika Czarnocka, and Barbara AotockaSection 10: Hormones and the rhizobial and mycorrhizal symbioses 74110.1 Phytohormone regulation of Medicago truncatula-rhizobia interactions. A review 743Ulrike Mathesius10.2 Plant hormones play common and divergent roles in nodulation and arbuscular mycorrhizal symbioses 753Eloise Foo10.3 Auxins and other phytohormones as signals in arbuscular mycorrhiza formation 766Jutta Ludwig-Muller10.4 Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at the whole genome level 777Lei Chen, Tianzuo Wang, Mingui Zhao, and Wen-Hao Zhang10.5 Hormone-induced nodule-like structures in land plants: an update 785Jacklyn Thomas and Arijit Mukherjee10.6 Structural studies of Medicago truncatula proteins participating in cytokinin signal transduction and nodulation 794Milosz Ruszkowski10.7 Identifying auxin response factor genes and their co-expression networks in Medicago truncatula 802David J. Burks and Rajeev K. AzadSection 11: Autoregulation of nodule numbers (AON) in Medicago truncatula 80911.1 The autoregulation gene SUNN mediates changes in nodule and lateral root formation in response to nitrogen through changes of shoot-to-root auxin transport 811Ulrike Mathesius, Giel E. van Noorden, and Jian JinSection 12: Genetics and genomics of Medicago truncatula 81712.1 Genetic map of Medicago truncatula 819Frans J. de Bruijn12.2 The genome sequence of Medicago truncatula: introduction 821Frans J. de Bruijn12.2.1 An improved genome release (Version Mt4.0) for the model legume Medicago truncatula 822Christopher D. Town12.2.2 The sequenced genomes of Medicago truncatula 828Nevin D. Young, and Peng Zhou12.3 Quantitative trait loci mapping: introduction 835Frans J. de Bruijn12.3.1 QTL analyses of seed germination and seedling pre-emergence growth under abiotic stresses in Medicago truncatula 837Beatrice Teulat12.3.2 Unraveling the determinants of freezing tolerance in Medicago truncatula: a first step toward improving the response of crop legumes to freezing stress using translational genomics 849Nadim Tayeh, Komlan Avia, Isabelle Lejeune-Hénaut, and Bruno Delbreil12.4 Genome-wide association and Medicago truncatula: introduction 862Frans J. de Bruijn12.4.1 Multi-locus GWAS and genome-wide composite interval mapping (GCIM) 863Yuan-Ming Zhang12.4.2 Genome-wide association mapping and population genomic features in Medicago truncatula 870Maxime Bonhomme and Christophe Jacquet12.4.3 The use of CRISPR/Cas9 as a reverse genetics tool to validate genome-wide association candidates 882Shaun J. Curtin, Peter Tiffin, and Nevin D. Young12.5 Transposons gene instability and gene tagging: introduction 887Frans J. de Bruijn12.5.1 Class II transposable elements in Medicago truncatula 888Dariusz Grzebelus12.6 Medicago truncatula and evolution: introduction 893Frans J. de Bruijn12.6.1 Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the Papilionoideae 895Li Zhang, Qigang Li, Jim M. Dunwell, and Yuan-Ming Zhang12.6.2 Patterns of polymorphism recombination and selection in Medicago truncatula 903Timothy Paape12.6.3 Genome-wide determination of poly(A) sites in Medicago truncatula: evolutionary conservation of alternative poly(A) site choice 911Xiaohui Wu, Arthur G. Hunt, and Qingshun Q. Li12.7 The Medicago truncatula genome and translational genomics: introduction 921Frans J. de Bruijn12.7.1 GBS-based genome-wide association and genomic selection for alfalfa (Medicago sativa) forage quality improvement 923Elisa Biazzi, Nelson Nazzicari, Luciano Pecetti, and Paolo Annicchiarico12.8 Genomic and genetic markers in Medicago truncatula: introduction 928Frans J. de Bruijn12.8.1 Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the Medicago truncatula genome 930Zan Wang12.8.2 Genome-wide development of microRNA-based SSR markers in Medicago truncatula with their transferability analysis and utilization in related legume species 936Wenxian Liu, Xueyang Min, and Yanrong Wang12.9 Small RNAs in Medicago truncatula: introduction 946Frans J. de Bruijn12.9.1 Small RNA diversity and roles in model legumes 948Hélène Proust, Jérémy Moreau, Martin Crespi, Caroline Hartmann, and Christine Lelandais-Brière12.9.2 Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula 963Ruicai Long, Mingna Li, Junmei Kang, Tiejun Zhang, Yan Sun, and Qingchuan Yang12.9.3 MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula 975Emanuel A. Devers12.9.4 MicroRNA-based biotechnology for Medicago improvement 987Baohong Zhang and Turgay Unver12.9.5 Expression and regulation of small RNAs in the plant-microorganism symbioses in Medicago truncatula 991Danfeng Jin, Xianwen Meng, Yue Wang, Jingjing Wang, Yuhua Zhao, and Ming Chen12.10 Mutagenesis forward and reverse genetics in Medicago truncatula: introduction 1003Frans J. de Bruijn12.10.1 Isolation and characterization of non-transposon symbiotic nitrogen fixing mutants of Medicago truncatula 1006Gyöngyi Zs. Kováts, Lili Fodor, Beatrix Horváth, Ágota Domonkos, Gergely Iski, Yuhui Chen, Rujin Chen, and Péter Kaló12.10.2 Targeted mutagenesis by an optimized agrobacterium-delivered CRISPR/Cas9 system in the model legume Medicago truncatula 1015Yingying Meng, ChongnanWang, Pengcheng Yin, Butuo Zhu, Pengcheng Zhang, Lifang Niu, and Hao Lin12.10.3 Whole genome sequencing of symbiotic nitrogen fixation mutants from the Medicago truncatula Tnt1 mutant population to identify relevant Tnt1 and MERE1 insertion sites 1019Vijaykumar Veerappan, Taylor Troiani, and Rebecca Dickstein12.10.4 A simple method for genetic crossing in Medicago truncatula 1027Marc Bosseno, Annie Lambert, Daniel Beucher, Marie Le Gleuher, Catherine Aubry, Nicolas Pauly, Françoise Montrichard, and Alexandre Boscari12.10.5 An artificial-microRNA system based on an endogenous microRNA of Medicago truncatula to unravel the function of root endosymbiosis related genes 1033Emanuel A. Devers12.11 Transcriptomics in Medicago truncatula: introduction 1043Frans J. de Bruijn12.11.1 Synergism and symbioses: unpacking complex mutualistic species interactions using transcriptomic approaches 1045Damian Hernandez, Kasey N. Kiesewetter, Sathvik Palakurty, John R. Stinchcombe, and Michelle E. Afkhami12.11.2 Comparative genomic and transcriptomic analyses of legume genes controlling the nodulation process 1055Lise Pingault, Zhenzhen Qiao, and Marc Libault12.11.3 Transcriptomic profiling of genes and pathways associated with osmotic and salt stress responses in Medicago truncatula 1062Tianzuo Wang, Xiuxiu Zhang, Min Liu, and Wen-Hao Zhang12.12 Medicago truncatula proteomics: introduction 1069Frans J. de Bruijn12.12.1 Organelle protein changes in arbuscular mycorrhizal Medicago truncatula roots as deciphered by subcellular proteomics 1070Ghislaine Recorbet, Christelle Lema1tre-Guillier, and Daniel Wipf12.12.2 Leveraging proteome and phosphoproteome to unravel the molecular mechanisms of legume-rhizobia symbiosis 1081Dhileepkumar Jayaraman, Muthusubramanian Venkateshwaran, and Jean-Michel Ané12.12.3 Application of bottom-up and top-down proteomics in Medicago spp. 1087Annelie Gutsch, Kjell Sergeant, and Jenny Renaut12.12.4 Medicago truncatula: local response of the root nodule proteome to drought stress 1096Esther M. Gonzalez, Stefanie Wienkoop, Christiana Staudinger, David Lyon, and Erena Gil-Quintana12.12.5 Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress 1102Ruicai Long, Mingna Li, Tiejun Zhang, Junmei Kang, Yan Sun, and Qingchuan Yang12.13 Medicago truncatula metabolomics: introduction 1112Frans J. de Bruijn12.13.1 Multifaceted investigation of metabolites during nitrogen fixation in Medicago truncatula via high resolution MALDI-MS imaging and ESI-MS 1113Erin Gemperline, Caitlin Keller, and Lingjun LiSection 13: Medicago truncatula databases and computer programs 112113.1 MTGD: the Medicago truncatula genome database 1123Vivek Krishnakumar13.2 Transcriptional factor databases for legume plants 1131Quang Ong, Van-Anh Le, Nguyen Phuong Thao, and Lam-Son Phan Tran13.3 Plant Omics Data Center and CATchUP: web databases for effective gene mining utilizing public RNA-Seq-based transcriptome data 1137Matt Shenton, Toru Kudo, Masaaki Kobayashi, Yukino Nakamura, Hajime Ohyanagi, and Kentaro YanoSection 14: Medicago truncatula and transformation 114714.1 Recent advances in Medicago spp. genetic engineering strategies 1149Massimo Confalonieri and Francesca Sparvoli14.2 Agrobacterium tumefaciens transformation of Medicago truncatula cell suspensions 1162Anelia Iantcheva and Miglena Revalska14.3 The Jemalong 2HA line used for Medicago truncatula transformation: hormonology and epigenetics 1170Ray J. Rose and Youhong Song14.4 Creation of composite plants - transformation of Medicago truncatula roots 1179Bettina Hause and Heena YadavIndex 1185
Frans de Bruijn was Director of the Laboratory for Plant-Microbe Interaction, a mixed INRA/CNRS research facility with about 100 scientists and support staff in Toulouse, France. He served as Director for two years and is currently Director of Recherche DR1.
1997-2025 DolnySlask.com Agencja Internetowa