• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Strongly Correlated Fermi Systems: A New State of Matter » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Strongly Correlated Fermi Systems: A New State of Matter

ISBN-13: 9783030503581 / Angielski / Twarda / 2020 / 380 str.

Miron Amusia; Vasily Shaginyan
Strongly Correlated Fermi Systems: A New State of Matter Amusia, Miron 9783030503581 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Strongly Correlated Fermi Systems: A New State of Matter

ISBN-13: 9783030503581 / Angielski / Twarda / 2020 / 380 str.

Miron Amusia; Vasily Shaginyan
cena 605,23 zł
(netto: 576,41 VAT:  5%)

Najniższa cena z 30 dni: 578,30 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania
Kategorie:
Nauka, Fizyka
Kategorie BISAC:
Technology & Engineering > Superconductors & Superconductivity
Science > Physics - Condensed Matter
Technology & Engineering > Materials Science - Electronic Materials
Wydawca:
Springer
Seria wydawnicza:
Springer Tracts in Modern Physics
Język:
Angielski
ISBN-13:
9783030503581
Rok wydania:
2020
Wydanie:
2020
Numer serii:
000363555
Ilość stron:
380
Waga:
0.73 kg
Wymiary:
23.39 x 15.6 x 2.39
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

1 Introduction

1.1 General considerations

1.2 Strong and weak interparticle interactions

1.3 Theoretical approaches to strongly correlated systems

1.4 Quantum phase transitions and NFL behavior of HF compounds

1.5 Main goals of the book

References

 

2 Landau Fermi liquid theory

2.1 Quasiparticle paradigm

2.2 Pomeranchuk stability conditions

2.3 Thermodynamic and transport properties

2.3.1 Equation for the effective mass

References

 

3 Density Functional Theory of Fermion Condensation

3.1 Introduction

3.2 Functional equation for the effective interaction

3.3 DFT and fermion condensation

3.4 DFT, the fermion condensation and superconductivity

3.5 Summary

References

 

4 Topological fermion condensation quantum phase transition

4.1 The fermion-condensation quantum phase transition

4.1.1 The FCQPT order parameter

4.1.2 Quantum protectorate related to FCQPT

4.1.3 The influence of FCQPT at finite temperatures

4.1.4 Two Scenarios of the Quantum Critical Point

4.1.5 Phase diagram of Fermi system with FCQPT

4.2 Topological phase transitions related to FCQPT

References

 

5 Rearrangement of the single particle degrees of freedom

5.1 Introduction

5.2 Basic properties of systems with the FC

5.2.1 The case Tc < T < Tf0

5.2.2 The case T < Tc. Superfluid systems with the FC

5.3 Validity of the quasiparticle pattern

5.3.1 Finite systems

5.3.2 Macroscopic systems

5.4 Interplay between fermion condensation and density-wave instability

5.5 Discussion

References

 

6 Topological FCQPT in strongly correlated Fermi systems

6.1 The superconducting state with FC at T = 0

6.1.1 Green’s function of the superconducting state with FC at T = 0

6.1.2 The superconducting state at finite temperatures

6.1.3 Bogolyubov quasiparticles

6.1.4 The dependence of superconducting phase transition temperature Tc on doping

6.1.5 The gap and heat capacity near Tc

6.2 The dispersion law and lineshape of single-particle excitations

6.3 Electron liquid with FC in magnetic fields

6.3.1 Phase diagram of electron liquid in magnetic field

6.3.2 Magnetic field dependence of the effective mass in HF metals and high-Tc superconductors

6.4 Appearance of FCQPT in HF compounds

References

 

7 Effective mass and its scaling behavior

7.1 Scaling behavior of the effective mass near the topological FCQPT

7.2 T/B scaling in heavy fermion compounds

References

 

8 Quantum spin liquid in geometrically frustrated magnets and the new state of matter

8.1 Introduction

8.2 Fermion condensation

8.3 Scaling of the physical properties

8.4 The frustrated insulator Herbertsmithite ZnCu3(OH)6Cl2

8.4.1 Thermodynamic properties

References

9 One dimensional quantum spin liquid

9.1 Introduction

9.2 General considerations

9.3 Scaling of the thermodynamic properties

9.4 T − H phase diagram of 1D spin liquid

9.5 Discussion and summary

References

 

10 Dynamic magnetic susceptibility of quantum spin liquid

10.1 Dynamic spin susceptibility of quantum spin liquids and HF metals

10.2 Theory of dynamic spin susceptibility of quantum spin liquid and heavy-fermion metals

10.3 Scaling behavior of the dynamic susceptibility

References

 

11 Spin-lattice relaxation rate and optical conductivity of quantum spin liquid

11.1 Spin-lattice relaxation rate of quantum spin liquid

11.2 Optical conductivity

References

12 Quantum spin liquid in organic insulators and 3He

12.1 The organic insulators EtMe3Sb[Pd(dmit)2]2 and κ − (BEDT − TTF)2Cu2(CN)3

12.2 Quantum spin liquid formed with 2D 3He

12.3 Discussion

12.4 Outlook

References

 

13 Universal behavior of the thermopower of HF compounds

13.1 Introduction

13.2 Extended quasiparticle paradigm and the scaling behavior of HF metals

13.2.1 Topological properties of systems with fermion condensate

13.2.2 Scaling behavior of HF metals

13.2.3 Universal behavior of the thermopower ST of heavy-fermion metals

13.3 Schematic T − B phase diagram

13.4 Summary

References

14 Universal behavior of the heavy-fermion metal β − YbAlB4

14.1 Introduction

14.2 Universal scaling behavior

14.3 The Kadowaki-Woods ratio

14.4 The schematic phase diagrams of HF compounds

14.5 Summary

References

 

15 The universal behavior of the archetypical heavy-fermion metals YbRh2Si2

15.1 Introduction

15.2 Scaling behavior of the effective mass

15.3 Non-Fermi liquid behavior in YbRh2Si2

15.3.1 Heat capacity and the Sommerfeld coefficient

15.3.2 Average magnetization

15.3.3 Longitudinal magnetoresistance

15.3.4 Magnetic entropy

15.4 Summary

References

16 Heavy fermion compounds as the new state of matter

16.1 Introduction

16.2 General properties of heavy-fermion metals

16.3 Common field-induced quantum critical point

16.4 Summary

References

 

17 Quasi-classical physics within quantum criticality in HF compounds

17.1 Second wind of the Dulong-Petit law at a quantum critical point

17.2 Transport properties related to the quasi-classical behavior

17.3 Quasi-classical physics and T-linear resistivity

References

 

18 Asymmetric conductivity of strongly correlated compounds

18.1 Normal state

18.1.1 Suppression of the asymmetrical differential resistance in YbCu5−xAlx in magnetic fields

18.2 Superconducting state

18.3 Relation to the baryon asymmetry in the early Universe

18.4 Conclusion

References

 

19 Asymmetric conductivity, pseudogap and violations of time and charge symmetries

19.1 Introduction

19.2 Asymmetric conductivity and the NFL behavior

19.3 Schematic phase diagram

19.4 Heavy fermion compounds and asymmetric conductivity

19.5 Conclusions

References

20 Violation of the Wiedemann-Franz law in Strongly Correlated Electron Systems

20.1 Introduction

20.2 Wiedemann-Franz law violations

20.3 Conclusion

References

 

21 Quantum criticality of heavy-fermion compounds

21.1 Quantum criticality of high-temperature superconductors and HF metals

21.2 Quantum criticality of quasicrystals

21.3 Quantum criticality at metamagnetic phase transitions

21.3.1 Typical properties of the metamagnetic phase transition in Sr3Ru2O7

21.3.2 Metamagnetic phase transition in HF metals

21.4 Universal Behavior of two-dimensional 3He at low temperatures

21.5 Scaling behavior of HF compounds and kinks in the thermodynamic functions

21.6 New state of matter

References

 

22 Quantum criticality, T -linear resistivity and Planckian limit

22.1 Introduction

22.2 Phase diagram

22.3 Planckian limit and quasi-classical physics

22.4 Universal scaling relation

22.5 Summary

References

 

23 Forming high-Tc superconductors by the topological FCQPT

23.1 Introduction

23.2 Fermion condensation as two component system

23.3 Superfluid density in the presence of fermion condensation

23.4 Penetration depth, fermion condensation and Uemura’s law

23.5 Concluding remarks

References

 

24 Conclusions

References

 

Index


Miron Y. Amusia graduated from Leningrad State University. He is currently a Professor Emeritus of the Hebrew University Jerusalem, Israel, and Principal Scientist at the Ioffe Institute, St. Petersburg, Russia. He holds Ph.D. and Doctor of Science degrees in Theoretical Physics. He has authored or co-authored 17 books and more than 530 refereed publications. He is an APS Fellow, recipient of the Alexander von Humboldt Prize, the Frenkel and Konstantinov Prizes and, medals from the Ioffe Institute, Ioffe Prize of Russian Academy of Sciences, the Semenov medal of the Russian Engineering Academy, and the Kapitza Medal of the Russian Academy of Natural Sciences. He is also an Academician of the same academy, and was a foreign fellow of the Argonne National Laboratory from 1991 to 1992. His main scientific interests and achievements concern many-body theory of atoms, stability of electron gas, fermion condensation, and collisions of fullerenes and clusters. His best-known findings include the discovery of the collective nature of atomic photoionization, prediction of the collectivization of few-electron shells under the action of many-electron neighboring shells, suggesting a new mechanism of Bremsstrahlung and the prediction of giant endohedral resonances.

Vasily R. Shaginyan received his Ph.D. in Theoretical Physics in 1981 and his Doctor of Science degree in 1990 from Leningrad (Petersburg) Nuclear Physics Institute, and is currently a leading research fellow at this Institute. His fields of interest include theoretical nuclear physics, condensed matter physics, strongly correlated Fermi systems and HF compounds, quantum spin liquids, quasicrystals, high-Tc superconductors, and quasi-classical behavior of HF compounds. He is author and co-author of 160 papers, including seminal papers on the fermion condensation phase transition and flat bands, heavy fermion metals, quantum spin liquids, and quasicrystals.

This book focuses on the topological fermion condensation quantum phase transition (FCQPT), a phenomenon that reveals the complex behavior of all strongly correlated Fermi systems, such as heavy fermion metals, quantum spin liquids, quasicrystals, and two-dimensional systems, considering these as a new state of matter. The book combines theoretical evaluations with arguments based on experimental grounds demonstrating that the entirety of very different strongly correlated Fermi systems demonstrates a universal behavior induced by FCQPT. In contrast to the conventional quantum phase transition, whose physics in the quantum critical region are dominated by thermal or quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT are controlled by a system of quasiparticles resembling the Landau quasiparticles. The book discusses the modification of strongly correlated systems under the action of FCQPT, representing the “missing” instability, which paves the way for developing an entirely new approach to condensed matter theory; and presents this physics as a new method for studying many-body objects. Based on the authors’ own theoretical investigations, as well as salient theoretical and experimental studies conducted by others, the book is well suited for both students and researchers in the field of condensed matter physics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia