ISBN-13: 9781119697329 / Angielski / Twarda / 2021 / 496 str.
ISBN-13: 9781119697329 / Angielski / Twarda / 2021 / 496 str.
Preface xvList of Contributors xvii1 Radiation-Matter Interaction Principles: Optical Absorption and Emission in the Visible-Ultraviolet Region 1Simonpietro Agnello1.1 Empirical Aspects of Radiation-Matter Interaction 11.1.1 Optical Absorption: The Lambert-Beer Law 11.1.2 Emission: Fluorescence and Phosphorescence 51.2 Microscopic Point of View 71.2.1 Einstein Coefficients 71.2.2 Oscillator Strength, Lifetime, Quantum Yield 111.2.3 Vibronic States: Homogeneous and Inhomogeneous Lineshape 141.2.4 Jablonski Energy Level Diagram: Permitted and Forbidden Transitions 201.2.5 Excited States Rate Equations 221.3 Instrumental Setups 231.3.1 Typical Block Diagram of Spectrometers 231.3.2 Light Sources 241.3.3 Dispersion Elements: Gratings and Resolution Power 251.3.4 Detectors: Photodiode, Photomultiplier, Charge Coupled Device 271.4 Case Studies 291.4.1 Optical Absorption in Visible-Ultraviolet Range 291.4.1.1 Scanning Device (Bandwidth and Scanning Speed Effects) 291.4.1.2 CCD Fiber Optic Device 311.4.2 Photoluminescence 311.4.2.1 Emission and Excitation Spectra: Energy Levels Reconstruction 32References 332 Time-Resolved Photoluminescence 35Marco Cannas and Lavinia Vaccaro2.1 Introduction to Photoluminescence Spectroscopy 352.1.1 Photoluminescence Properties Related to Points Defects: Electron-Phonon Coupling 352.1.2 Optical Transitions: The Franck-Condon Principle 382.1.3 Zero-Phonon Line 402.1.4 Phonon Line Structure 432.1.5 Vibrational Structure 452.1.6 Inhomogeneous Effects 482.2 Experimental Methods and Analysis 482.2.1 Time-Resolved Luminescence 482.2.2 Site-Selective Luminescence 502.2.3 Basic Design of Experimental Setup: Pulsed Laser Sources; Monochromators; Detectors 512.2.3.1 Tunable Laser 522.2.3.2 Time-Resolved Detection System: Spectrograph and Intensified CCD Camera 522.3 Case Studies: Luminescent Point Defects in Amorphous SiO2 542.3.1 Emission Spectra and Lifetime Measurements 552.3.2 Zero-Phonon Line Probed by Site-Selective Luminescence 58References 633 Ultrafast Optical Spectroscopies 65Alice Sciortino and Fabrizio Messina3.1 Femtosecond Spectroscopy: An Overview 653.2 Ultrafast Optical Pulses 673.2.1 General Properties 673.2.1.1 Dispersion Effect: Group Velocity Dispersion 673.2.2 Nonlinear Optics: Basis and Applications 693.2.2.1 Second Harmonic Generation and Sum Frequency Generation 693.2.2.2 Noncollinear Optical Parametric Amplifier 703.2.2.3 Supercontinuum Generation 723.3 Transient Absorption Spectroscopy 733.3.1 The Experimental Method 743.3.2 Typical Experimental Setups 763.3.3 Data Analysis and Interpretation 783.4 Ultrafast Fluorescence Spectroscopies 793.4.1 FLUC: The Experimental Method 803.4.2 FLUC: Typical Experimental Setups 803.4.3 FLUC: Data Analysis and Interpretation 823.4.4 Kerr-Based Femtosecond Fluorescence Spectroscopy 823.5 Femtosecond Stimulated Raman Spectroscopy 833.5.1 The Experimental Method 833.5.2 Typical Experimental Setups 843.5.3 Data Analysis and Interpretation 873.6 Case Studies 883.6.1 Ultrafast Relaxation Dynamics of Molecules in Solution Phase 883.6.2 Relaxation of Excited Charge Carriers and Excitons in Semiconductor Nanoparticles 893.6.3 Ultrafast Relaxation Dynamics of Carbon-based Nanomaterials 91References 924 Confocal and Two-Photon Spectroscopy 97Giuseppe Sancataldo and Valeria Vetri4.1 Introduction and Historical Perspectives 974.1.1 Point Spread Function and Optical Resolution 984.1.2 Optical Sectioning and Imaging of 3D Samples 1014.2 Fluorescence Imaging 1024.2.1 Laser Scanning Confocal Fluorescence Microscope 1034.2.2 Two-Photon Microscope 1054.2.3 The Importance of Sample Preparation from Solid State to Dynamic Specimens 1084.2.4 Setting Up a Measurement 1094.3 Spectroscopy Using a Microscope 1104.3.1 Observables in Fluorescence Microscopy 1114.3.2 Measuring Dynamics: Gaining Information Below Resolution 1134.4 Case Studies 1174.4.1 Understanding Microstructures and Mechanistic Aspects in Materials 1174.4.2 Fluctuation Methods for the Analysis of Nanosystems 121References 1245 Infrared Absorption Spectroscopy 129Tiziana Fiore and Claudia Pellerito5.1 Fundamentals 1295.1.1 Introduction 1305.1.2 Basic Principles 1305.1.3 Infrared Spectra 1355.1.4 Fourier Transform Infrared Spectrometers (Interferometers) 1375.2 Sources and Detectors 1405.3 Techniques and Sampling Methods 1445.3.1 Transmission Methods 1445.3.1.1 Solid Samples 1445.3.1.2 Liquid and Solution Samples 1475.3.1.3 Gas Samples 1485.3.2 Attenuated Total Reflectance (ATR) Method 1485.3.3 FTIR Microspectroscopy 1505.3.4 AFM-IR Spectroscopy 1505.3.5 Hyphenated Techniques 1505.4 Applications and Case Studies 1515.4.1 Chemical Characterization and Kinetics 1515.4.2 Surfaces 1525.4.3 Medical and Life Science (Pharmaceutical, Medical, Biological, Biotechnological) 1535.4.4 Cultural Heritage and Forensic 1565.4.5 Environmental and Geological 1575.4.6 Food Industry 158References 1586 Raman and Micro-Raman Spectroscopy 169Giuliana Faggio, Rossella Grillo, and Giacomo Messina6.1 Basic Theory 1696.1.1 Introduction 1696.1.2 Spectroscopic Units 1696.1.3 Molecular Vibrations 1706.1.4 Classical Theory of the Raman Scattering 1716.1.5 Simplified Quantum Approach to Raman Scattering 1746.1.6 Raman and IR Activities 1786.1.7 Crystal Vibrations 1806.1.8 Raman Scattering in Crystals 1836.1.9 Surface-Enhanced Raman Scattering (SERS) 1856.2 Instrumentation 1876.2.1 Laser Sources and Optical Filters 1876.2.2 Monochromators 1886.2.3 Detectors 1896.2.4 Raman Microscopy and Raman Mapping 1896.3 Case Studies 1916.3.1 Raman Indicators 1916.3.2 Identification of Materials and Crystalline Quality 1916.3.3 Graphene and Graphite Raman Spectra 1936.3.4 Doping Detection 1966.3.5 Basic Examples of SERS 196References 1987 Thermally Stimulated Luminescence 201Federico Moretti7.1 Theory of Thermally Stimulated Luminescence 2027.1.1 Simple Model 2057.1.1.1 First-Order Kinetics 2077.1.1.2 Second-Order Kinetics 2117.1.1.3 General-Order Kinetics 2117.1.2 Localized Transitions 2137.1.3 Beyond the Ideal Behavior 2147.1.3.1 Luminescence Quenching 2157.1.3.2 Trap Energy Distributions 2167.2 Data Analysis Methods 2167.2.1 Initial Rise 2177.2.2 Peak Shape 2187.2.3 Heating Rate Method 2207.2.4 Glow Curve Fit 2217.3 Instrumentation and Considerations on Samples 2217.4 Case Studies 2227.4.1 Lanthanide Energy Level Position in the Bandgap 2237.4.2 Bandgap Engineering 2247.4.3 Correlation of TSL Data with EPR Results 225Note 225References 2268 Spectroscopic Studies of Radiation Effects on Optical Materials 229Sylvain Girard, Vincenzo De Michele, and Adriana Morana8.1 Introduction 2298.1.1 Radiation Environments 2298.1.2 Applications for Optical Materials 2308.2 Radiation-Induced Effects on Optical Materials and Optical Fibers 2318.2.1 Radiation-Induced Attenuation - RIA 2318.2.2 Radiation-Induced Emission - RIE 2338.2.3 Radiation-Induced Compaction - RIC and Refractive Index Change - RIRIC 2348.2.4 Origins of Radiation-Induced Optical Changes 2348.3 Radiation-Induced Attenuation Measurements 2358.3.1 Postirradiation RIA Measurements 2358.3.1.1 Bulk Glasses 2358.3.1.2 Optical Fibers 2358.3.2 In Situ RIA Measurements 2368.3.2.1 Bulk Glasses 2368.3.2.2 Optical Fibers 2378.3.3 Exploitation of RIA Spectra: Point Defect Identification 2418.3.3.1 Spectral Decomposition 2418.3.3.2 Point Defect Kinetics 2438.4 Radiation-Induced Luminescence (RIL) 2438.4.1 Architectures of Fiber-Based Sensors: Extrinsic and Intrinsic 2438.4.2 Calibration of the RIL Versus Proton Flux 2458.4.3 Bragg Peak Measurements for Proton-Therapy Applications 2458.5 Case Studies 2468.5.1 Characterization of Bulk Glasses for Space Optical Systems 2468.5.2 Fiber-Based Dosimetry with Phosphorus-Doped Optical Fibers 2478.5.3 Proton Flux Measurements Through the RIL of Optical Fibers 249References 2499 Electron Paramagnetic Resonance Spectroscopy (EPR) 253Antonino Alessi and Franco Gelardi9.1 Introduction 2539.2 Basic Principle of EPR 2539.3 Anisotropy of g and Spectral Lineshape 2559.4 The EPR Lineshape in Powder or in Amorphous 2579.5 Hyperfine Interactions 2589.6 Paramagnetic Center with S = 1 2619.7 Basics of Continuous Wave EPR Setup 2639.8 Parameters for EPR Signal Acquisition 2669.9 Cw EPR Case Studies 2689.10 Time-Resolved EPR Spectroscopy 2709.10.1 Saturation Transients 2709.10.2 Spin Nutations 2729.10.3 Free Induction Decay 2749.10.4 Spin Echo 276References 27710 Nuclear Magnetic Resonance Spectroscopy 281Alberto Spinella and Pellegrino Conte10.1 Introduction 28110.2 NMR General Concepts 28110.2.1 Nuclear Spin and Magnetic Moment 28110.2.2 Spin Precession and Larmor Frequency 28310.2.3 Longitudinal Magnetization 28310.2.4 Transverse Magnetization and NMR Signal 28410.2.5 Spin Interactions 28510.2.6 Fourier Transform NMR 28710.3 Liquid-State NMR 28810.3.1 The NMR Spectrometer 28810.3.2 Sample Preparation 28810.3.3 How to Set an Experiment 28910.3.4 Longitudinal Relaxation Time Measurement 28910.3.5 Transverse Relaxation Time Measurement 29010.3.6 2D-Liquid-State NMR Techniques 29110.3.7 Considerations on the Molecular Dynamics by NMR Spectroscopy 29210.4 Solid-State NMR 29310.4.1 Powdered Samples 29310.4.2 Cross-Polarization and Heteronuclear Decoupling 29410.4.3 Magic-Angle Spinning 29610.4.4 Homonuclear Dipolar Decoupling 29910.4.5 2D-Solid State NMR Techniques 29910.4.6 Recoupling Techniques 30010.4.7 Molecular Dynamics by Solid-State NMR Spectroscopy 30110.5 Nonconventional NMR Techniques 30110.5.1 Time Domain NMR 30210.5.2 Fast Field Cycling NMR Relaxometry 30210.5.3 Earth's Magnetic Field NMR 30910.6 Case Studies 30910.6.1 Polymers and Polymer-Based Composites 30910.6.2 Mesoporous Materials 31010.6.3 Cultural Heritage 31110.6.4 Food 31310.6.5 Environmental NMR: Rocks, Soils, Waters, Air 31310.6.6 NMR of "Exotic" Nuclei 314References 31511 X-Ray Absorption Spectroscopy and X-Ray Raman Scattering Spectroscopy for Energy Applications 319Alessandro Longo, Francesco Giannici, and Christoph J. Sahle11.1 Introduction 31911.2 The X-Ray Absorption Coefficient and the EXAFS Technique 32011.2.1 The EXAFS Equation and the Key Approximations 32211.2.1.1 Many-Body Effects 32311.2.1.2 Inelastic Effects 32411.2.2 Multiple Scattering Theory: Basic Information 32511.2.3 XANES or Near-Edge X-Ray Absorption Fine Structure and Pre-Edge Region 32811.3 EXAFS: Data Analysis Overview 33111.4 Experimental Setups 33311.4.1 Transmission Geometry 33311.4.2 Fluorescence Geometry 33411.5 X-Ray Raman Scattering Spectroscopy 33511.5.1 Theoretical Background 33511.5.2 Experimental Setup 33811.5.2.1 Instrumentation 33811.5.2.2 Data Processing 33811.6 Case Studies: Application of XAFS and XRS for Energy Materials 33911.6.1 CO Oxidation Reaction: The Au/CeO2 Catalyst 33911.6.2 Materials for Solid Oxide Fuel Cells 34011.6.3 Oxide-Ion Conductors: Dopants and Vacancies 34211.6.4 Proton-Conducting Oxides 34311.6.5 The Role of Oxygen in Fuel Cell Cathodes 344References 34612 X-Ray Photoelectron Spectroscopy 351Michelangelo Scopelliti12.1 General Principles 35112.2 Instrumental Setup 35212.2.1 Vacuum and Ultrahigh Vacuum, UHV 35312.2.1.1 Roughing Pumps 35412.2.1.2 Turbomolecular Pumps 35512.2.1.3 Ion Pumps 35512.2.1.4 Titanium Sublimation Pumps 35612.2.2 Magnetic Shielding 35612.2.3 Sources 35612.2.4 Sample Manipulators 35812.2.5 Charge Neutralization Systems 35912.2.5.1 Electron Guns 36012.2.5.2 Ion Guns 36012.2.6 Analyzers and Detectors 36112.3 Applications 36212.3.1 Quantitative Analysis 36412.3.2 Qualitative Analysis 36512.3.3 Surface Maps 36512.3.4 Profiles 36712.3.4.1 Depth Profiles 36712.3.4.2 Angle-Resolved Profiles 36812.4 Data Analysis 36812.4.1 Shift Corrections 37012.4.2 Background 37112.4.3 Line Shapes 37212.4.4 Nonlinear Fitting 37512.5 Case Studies 37612.5.1 Hydrocarbon Contamination 37612.5.2 Energy Loss 37612.5.3 Depth Profiles/1 37812.5.4 Depth Profiles/2 379References 38013 Ultraviolet Photoelectron Spectroscopy - Materials Science Technique 383Dmitry A. Zatsepin and Anatoly F. Zatsepin13.1 UPS History and Capabilities 38313.2 Theory and Experimental Methodology of UPS 38413.2.1 Physical Principles of UPS 38413.2.2 Angle-Resolved UPS 38913.3 UPS Experiment and Factors of Influence 39113.3.1 Vacuum System and Pumping 39113.3.2 Sample and External Spectral Standard Preparation 39213.3.3 Ultraviolet Source 39513.3.4 Charge Neutralizer 39713.3.5 Staff Requirements 400References 40114 Transmission Electron Spectroscopy 405Raffaele Giuseppe Agostino and Vincenzo Formoso14.1 Empirical Aspects of Electron-Matter Interaction 40514.1.1 Fast Electrons Interaction with a Solid 40514.1.2 Electron Energy Loss Spectroscopy (EELS) 40614.1.2.1 Inner Shell Excitations 40814.1.2.2 Low-Loss Excitations 41114.1.2.3 Energy-Filtered Images 41314.2 Instrumental Setups 41514.2.1 TEM in a Nutshell 415References 42215 Atomic Force Microscopy and Spectroscopy 425Gianpiero Buscarino15.1 Introduction 42515.2 The AFM Microscope 42615.2.1 The Probe 42615.2.2 Harmonic Excitation of the Cantilever 42715.2.3 Scanning System 42815.2.4 Measurement of the Cantilever's Deflection 43015.2.5 Feedback System 43215.3 Tip-Surface Interaction Forces 43215.3.1 Van der Waals 43315.3.2 Short-Range Repulsive 43415.3.3 Adhesion 43515.3.4 Capillary 43815.3.5 Other Forces 43915.4 AFM Acquisition Modes 44015.4.1 Contact Mode 44015.4.2 Tapping Mode 44215.5 AFM Spectroscopy 45115.6 Case Studies 45415.6.1 Roughness of a Flat Surface 45415.6.2 Size Distribution of Nanoparticles 456References 458Index 461
Simonpietro Agnello received his Ph.D. in Physics at the Department of Physics and Chemistry, University of Palermo, Italy, where he currently works as Associate Professor. His research in experimental physics focuses on spectroscopic characterization of materials, matter-radiation interaction processes, and thermal modification of materials. Prof. Agnello is an expert of spectroscopic techniques, namely electron paramagnetic resonance, optical absorption spectroscopy, Raman spectroscopy and time-resolved optical spectroscopy. He actively studies advanced materials, nanostructured silica materials, carbon-based materials, and 2D materials. He has published about 300 research articles in peer-reviewed journals and has achieved an h-index of 28.
1997-2024 DolnySlask.com Agencja Internetowa