ISBN-13: 9781119772149 / Angielski / Twarda / 2022 / 350 str.
About the Editor xviiAbout the Contributors xixList of Reviewers xxiiiForeword by Albert H. Zimmerman and Ralph E. White xxvPreface xxviiAcronyms and Abbreviations xxix1 Introduction 1Thomas P. Barrera1.1 Introduction 11.2 Purpose 11.2.1 Background 21.2.2 Knowledge Management 21.3 History of Spacecraft Batteries 31.3.1 The Early Years - 1957 to 1975 31.3.1.1 Silver- Zinc 41.3.1.2 Silver- Cadmium 41.3.1.3 Nickel- Cadmium 51.3.2 The Next Generation - 1975 to 2000 51.3.2.1 Nickel- Hydrogen 61.3.2.2 Sodium- Sulfur 71.3.2.3 Transition to Lithium- Ion 71.3.3 The Li- ion Revolution - 2000 to Present 81.3.3.1 First Space Applications 81.3.3.2 Advantages and Disadvantages 101.4 State of Practice 111.4.1 Raw Materials Supply Chain 111.4.2 COTS and Custom Li- ion Cells 121.4.3 Hazard Safety and Controls 121.4.4 Acquisition Strategies 131.5 About the Book 131.5.1 Organization 141.5.2 Li- ion Cells and Batteries 141.5.3 Electrical Power System 141.5.4 On- Orbit LIB Experience 151.5.5 Safety and Reliability 151.5.6 Life Cycle Testing 151.5.7 Ground Processing and Mission Operations 151.6 Summary 16References 162 Space Lithium- Ion Cells 19Yannick Borthomieu, Marshall C. Smart, Sara Thwaite, Ratnakumar V. Bugga, and Thomas P. Barrera2.1 Introduction 192.1.1 Types of Space Battery Cells 192.1.2 Rechargeable Space Cells 202.1.3 Non- Rechargeable Space Cells 202.1.4 Specialty Reserve Space Cells 212.2 Definitions 222.2.1 Capacity 222.2.2 Energy 232.2.3 Depth- of- Discharge 232.3 Cell Components 242.3.1 Positive Electrode 242.3.1.1 Lithium Cobalt Oxide 252.3.1.2 Lithium Nickel Cobalt Aluminum Oxide 252.3.1.3 Lithium Nickel Manganese Cobalt Oxide 252.3.1.4 Lithium Manganese Oxide 252.3.1.5 Lithium Iron Phosphate 262.3.2 Negative Electrode 262.3.2.1 Solid Electrolyte Interphase 262.3.2.2 Coke 272.3.2.3 Hard Carbon 272.3.2.4 Graphite 272.3.2.5 Mesocarbon Microbead 272.3.2.6 Si- C Composites 282.3.2.7 Low- Voltage Resilience 282.3.3 Electrolytes 282.3.3.1 Room Temperature Electrolytes 282.3.3.2 Low- Temperature Electrolytes 292.3.4 Separators 302.3.5 Safety Devices 312.3.5.1 Pressure Vents 312.3.5.2 Current Interrupt Devices 322.3.5.3 Positive Temperature Coefficient 332.3.5.4 Shutdown Separator 332.4 Cell Geometry 332.4.1 Standardization 342.4.2 Cylindrical 342.4.3 Prismatic 352.4.4 Elliptical-Cylindrical 352.4.5 Pouch 352.5 Cell Requirements 362.5.1 Specification 362.5.2 Capacity and Energy 362.5.3 Operating Voltage 372.5.4 Mass and Volume 372.5.5 dc Resistance 372.5.6 Self- Discharge Rate 372.5.7 Environments 382.5.7.1 Operating and Storage Temperature 382.5.7.2 Vibration, Shock, and Acceleration 382.5.7.3 Thermal Vacuum 392.5.7.4 Radiation 392.5.8 Lifetime 392.5.9 Cycle Life 392.5.10 Safety and Reliability 402.6 Cell Performance Characteristics 402.6.1 Charge and Discharge Voltage 402.6.2 Capacity 412.6.3 Energy 422.6.4 Internal Resistance 422.6.5 Depth of Discharge 432.6.6 Life Cycle 442.7 Cell Qualification Testing 462.7.1 Test Descriptions 462.7.1.1 Electrical 462.7.1.2 Environmental 472.7.1.3 Safety 482.7.1.4 Life- Cycle Testing 482.8 Cell Screening and Acceptance Testing 492.8.1 Screening 492.8.2 Lot Definition 502.8.3 Acceptance Testing 502.9 Summary 52Acknowledgments 52References 533 Space Lithium- Ion Batteries 59Sara Thwaite, Marshall C. Smart, Eloi Klein, Ratnakumar V. Bugga, Aakesh Datta, Yannick Borthomieu, and Thomas P. Barrera3.1 Introduction 593.2 Requirements 593.2.1 Battery Requirements Specification 603.2.2 Statement of Work 613.2.3 Voltage 623.2.4 Capacity 623.2.5 Mass and Volume 623.2.6 Cycle Life 633.2.7 Environments 633.3 Cell Selection and Matching 633.3.1 Selection Methodologies 643.3.2 Matching Process 643.4 Mission- Specific Characteristics 643.4.1 LIB Sizing 653.4.2 GEO Missions 653.4.3 LEO Missions 673.4.4 MEO and HEO Missions 693.4.5 Lagrange Orbit Missions 693.5 Interfaces 703.5.1 Electrical 703.5.2 Mechanical 703.5.3 Thermal 703.6 Battery Design 713.6.1 Electrical 713.6.1.1 S- P and P- S Design 723.6.1.2 Analysis 753.6.2 Mechanical 753.6.2.1 Packaging 763.6.2.2 Structural Mechanical Analysis 763.6.3 Thermal 773.6.3.1 Design 783.6.3.2 Analysis 793.6.4 Materials, Parts, and Processes 803.6.4.1 Parts 813.6.4.2 Cleanliness 813.6.5 Safety and Reliability 823.6.5.1 Human- Rated and Unmanned Missions 823.6.5.2 Safety Features and Devices 833.7 Battery Testing 843.7.1 Test Requirements and Planning 843.7.2 Test Articles and Events 853.7.3 Qualification Test Descriptions 863.7.3.1 Capacity 863.7.3.2 Resistance 873.7.3.3 Charge Retention 883.7.3.4 Vibration 883.7.3.5 Shock 893.7.3.6 Thermal Cycle 893.7.3.7 Thermal Vacuum 903.7.3.8 Electromagnetic Compatibility 913.7.3.9 Life Cycle 923.7.3.10 Safety 933.7.4 Acceptance Test Descriptions 933.8 Supply Chain 943.8.1 Battery Parts and Materials 943.8.2 Space LIB Suppliers 943.9 Summary 94References 954 Spacecraft Electrical Power Systems 99Thomas P. Barrera4.1 Introduction 994.2 EPS Functional Description 1014.2.1 Power Generation 1014.2.2 Energy Storage 1024.2.3 Power Management and Distribution 1024.2.4 Harness 1034.3 EPS Requirements 1034.3.1 Requirements Specification 1044.3.2 Orbital Mission Profile 1054.3.3 Power Capability 1064.3.4 Mission Lifetime 1064.4 EPS Architecture 1064.4.1 Bus Voltage 1074.4.2 Direct Energy Transfer 1084.4.2.1 Unregulated Bus 1084.4.2.2 Partially- Regulated Bus 1084.4.2.3 Fully- Regulated Bus 1094.4.3 Peak- Power Tracker 1094.4.4 Direct Energy Transfer and Peak- Power Tracker Trades 1104.5 Battery Management Systems 1114.5.1 Autonomy 1114.5.2 Battery Charge Management 1114.5.3 Battery Cell Voltage Balancing 1124.5.3.1 Passive Cell Balancing 1134.5.3.2 Active Cell Balancing 1144.5.4 EPS Telemetry 1144.6 Dead Bus Events 1144.6.1 Orbital Considerations 1154.6.2 Survival Fundamentals 1154.7 EPS Analysis 1154.7.1 Energy Balance 1164.7.2 Power Budget 1164.7.2.1 Inputs 1184.7.2.2 Outputs 1184.8 EPS Testing 1194.8.1 Assembly, Integration, and Test 1194.8.2 Bus Integration 1204.8.3 Functional Test 1214.9 Summary 122References 1225 Earth- Orbiting Satellite Batteries 125Penni J. Dalton, Eloi Klein, David Curzon, Samuel P. Russell, Keith Chin, David J. Reuter, and Thomas P. Barrera5.1 Introduction 1255.2 Earth Orbit Battery Requirements 1265.3 NASA International Space Station - LEO 1275.3.1 Introduction 1275.3.2 Electrical Power System 1275.3.3 Ni- H 2 Battery Heritage 1285.3.4 Transition to Lithium- Ion Battery Power Systems 1295.4 NASA Goddard Space Flight Center Spacecraft 1305.4.1 Introduction 1305.4.2 Solar Dynamics Observatory - GEO 1315.4.3 Lunar Reconnaissance Orbiter - Lunar 1335.4.4 Global Precipitation Measurement - LEO 1335.5 Van Allen Probes - HEO 1345.5.1 Mission Objectives 1345.5.2 Electrical Power System 1345.5.3 LIB Architecture 1355.6 GOES Communication Satellites - GEO 1365.6.1 Mission Objectives 1365.6.2 Battery Heritage 1365.6.3 LIB and Power System Architecture 1365.7 James Webb Space Telescope - Earth-Sun Lagrange Point 2 1375.7.1 Mission Objectives 1375.7.2 Lagrange Orbit 1385.7.3 Electrical Power System 1385.7.4 LIB Architecture 1395.8 CubeSats - LEO 1405.8.1 Introduction 1405.8.2 Electrical Power System and Battery Architecture 1415.8.3 Advanced Hybrid EPS Systems 1425.9 European Space Agency Spacecraft 1435.9.1 Introduction 1435.9.2 Sentinel- 1 Mission Objectives 1435.9.3 Galileo Mission Objectives - MEO 1445.10 NASA Astronaut Battery Systems 1465.10.1 Introduction 1465.10.2 EMU Long- Life Battery 1465.10.3 Lithium- Ion Rechargeable EVA Battery Assembly 1475.10.4 Lithium- Ion Pistol- Grip Tool Battery 1485.10.5 Simplified Aid for EVA Rescue 1495.11 Summary 151Acknowledgment 151References 1516 Planetary Spacecraft Batteries 155Marshall C. Smart and Ratnakumar V. Bugga6.1 Introduction 1556.2 Planetary Mission Battery Requirements 1556.2.1 Service Life and Reliability 1566.2.2 Radiation Tolerance 1566.2.3 Extreme Temperature 1566.2.4 Low Magnetic Signature 1576.2.5 Mechanical Environments 1576.2.6 Planetary Protection 1576.3 Planetary and Space Exploration Missions 1586.3.1 Earth Orbiters 1586.3.2 Lunar Missions 1586.3.2.1 Gravity Recovery and Interior Laboratory 1596.3.2.2 Lunar Crater Observation and Sensing Satellite 1596.3.3 Mars Missions 1596.3.3.1 Mars Orbiters 1606.3.3.2 Mars Landers 1616.3.3.3 Mars Rovers 1666.3.3.4 Mars Helicopters, CubeSats, and Penetrators 1746.3.4 Missions to Jupiter 1776.3.4.1 NASA Juno Mission 1776.3.5 Missions to Comets and Asteroids 1796.3.5.1 Hayabusa (MUSES- C) 1796.3.5.2 ESA Rosetta Lander Philae 1806.3.5.3 NASA OSIRIS- REx Mission 1806.3.6 Missions to Deep Space and Outer Planets 1806.4 Future Missions 1806.4.1 The Planned NASA Europa Clipper Mission 1816.4.2 ESA JUICE Mission 1836.5 Mars Sample Return Missions 1836.6 Summary 184Acknowledgment 184References 1847 Space Battery Safety and Reliability 189Thomas P. Barrera and Eric C. Darcy7.1 Introduction 1897.1.1 Space Battery Safety 1897.1.2 Industry Lessons Learned 1907.2 Space LIB Safety Requirements 1917.2.1 Nasa Jsc- 20793 1927.2.2 Range Safety 1927.2.3 Design for Minimum Risk 1937.3 Safety Hazards, Controls, and Testing 1937.3.1 Electrical 1947.3.1.1 Overcharge 1947.3.1.2 Overdischarge 1947.3.1.3 External Short Circuit 1957.3.1.4 Internal Short Circuit 1957.3.2 Mechanical 1967.3.3 Thermal 1967.3.3.1 Overtemperature 1977.3.3.2 Low Temperature 1987.3.4 Chemical 1987.3.5 Safety Testing 1997.4 Thermal Runaway 2007.4.1 Likelihood and Severity 2007.4.2 Characterization 2017.4.3 Testing 2027.4.3.1 Single Cell 2027.4.3.2 Module and Battery 2047.5 Principles of Safe- by- Design 2047.5.1 Field Failures Due to ISCs 2047.5.2 Cell Design 2057.5.3 Cell Manufacturing and Quality Audits 2057.5.4 Cell Testing and Operation 2067.6 Passive Propagation Resistant LIB Design 2077.6.1 PPR Design Guidelines 2077.6.1.1 Control of Side Wall Rupture 2077.6.1.2 Cell Spacing and Heat Dissipation 2087.6.1.3 Current- Limiting Cells 2087.6.1.4 Ejecta Path 2087.6.1.5 Flame Suppression 2087.6.2 PPR Verification 2097.6.2.1 Trigger Cell Selection 2097.6.2.2 PPR LIB Unit Design and Manufacturing 2107.6.2.3 PPR LIB Test Execution 2107.6.2.4 Post- Test Analysis and Reporting 2117.6.3 Case Study - NASA US Astronaut Spacesuit LIB Redesign 2117.7 Battery Reliability 2157.7.1 Requirements 2157.7.1.1 Battery Reliability Analysis 2157.7.1.2 Hazard Analysis 2167.7.2 Battery Failure Rates 2177.7.2.1 Failure Rate in Time 2177.7.2.2 Failure Rate Characteristics 2187.8 Summary 218References 2198 Life- Cycle Testing and Analysis 225Samuel Stuart, Shriram Santhanagopalan, and Lloyd Zilch8.1 Introduction 2258.1.1 Test- Like- You- Fly 2258.1.2 Design of Test 2268.1.3 Test Article Selection 2268.1.4 Personnel, Equipment, and Facilities 2278.2 LCT Planning 2288.2.1 Test Plan 2288.2.2 Test Procedures 2288.2.3 Test Readiness Review 2298.2.4 Sample Size Statistics 2298.3 Charge and Discharge Test Conditions 2298.3.1 Charge and Discharge Rates 2298.3.2 Capacity and DOD 2308.3.3 Voltage Limits 2308.3.4 Charge and Discharge Control 2308.3.5 Parameter Margin 2318.4 Test Configuration and Environments 2318.4.1 Test Article Configuration 2318.4.2 Test Environments 2328.4.2.1 Temperature Controlled Chambers 2328.4.2.2 Thermal Vacuum Chambers 2328.4.2.3 Cold Plates 2338.5 Test Equipment and Safety Hazards 2338.5.1 Test Equipment Configuration 2348.5.1.1 Hardware 2348.5.1.2 Software 2358.5.2 Test Safety Hazards 2368.5.2.1 Test Articles 2378.5.2.2 Equipment Induced 2388.5.2.3 Laboratory Induced 2388.5.2.4 Test Control Mitigations 2398.5.2.5 Physical Mitigations 2398.6 Real- Time Life- Cycle Testing 2398.6.1 Test Article Selection 2408.6.2 Test Execution and Monitoring 2408.6.3 LCT End- of- Life Management 2408.7 Calendar and Storage Life Testing 2418.7.1 Calendar Life 2418.7.2 Storage Life 2418.7.3 Test Methodology 2428.8 Accelerated Life- Cycle Testing 2428.8.1 Accelerated Life Test Methodologies 2428.8.2 Lessons Learned 2438.9 Data Analysis 2448.9.1 LCT Data Analysis 2448.9.2 Trend Analysis and Reporting 2458.10 Modeling and Simulation 2468.10.1 Modeling and Simulation in Battery- Life Testing 2478.10.2 Empirical Approaches 2488.10.3 First Principles of Physics- Based Models 2498.10.4 Systems Engineering Models 2498.10.5 Models for Tracking Test Progress 2508.10.6 Parameterization Approaches 2528.10.7 Data Requirements 2528.10.8 Lifetime and Performance Prediction 2538.11 Summary 255References 2559 Ground Processing and Mission Operations 257Steven E. Core, Scott Hull, and Thomas P. Barrera9.1 Introduction 2579.1.1 Satellite Systems Engineering 2579.1.2 Ground and Space Satellite EPS Requirements 2589.2 Ground Processing 2589.2.1 Storage 2589.2.2 Transportation and Handling 2599.3 Launch Site Operations 2609.3.1 Launch Site Processing 2609.3.2 Pre- Launch Operations 2639.3.3 Launch Operations 2649.4 Mission Operations 2649.4.1 GEO Transfer Orbit 2659.4.2 GEO On- Station Operations 2669.4.3 On- Orbit Maintenance Operations 2679.4.4 Contingency Operations 2699.4.4.1 Safe Mode 2699.4.4.2 Dead Bus Survival 2709.4.4.3 Dead Bus Recovery 2709.4.5 End- of- Life Operations 2719.5 End- of- Mission Operations 2729.5.1 Satellite Disposal Operations 2739.5.1.1 LEO Disposal Operations 2739.5.1.2 GEO Disposal Operations 2749.5.2 Passivation Requirements 2749.5.2.1 United States Passivation Guidance 2759.5.2.2 International Passivation Guidance 2769.5.3 Satellite EPS Passivation Operations 2769.5.3.1 Hard Passivation Operations 2779.5.3.2 Soft Passivation Operations 2789.5.3.3 lv Orbital Stage EPS Passivation Operations 2799.6 Summary 279References 280Appendix A: Terms and Definitions 283Index 293
Thomas P. Barrera (President, LIB-X Consulting) has a PhD in Chemical Engineering from the University of California, Los Angeles (UCLA), CA, USA. He is the Founder of LIB-X Consulting, a private technical consulting firm specializing in lithium-ion battery power system engineering. Previously, he was a Technical Fellow at The Boeing Co., El Segundo, CA, USA, leading commercial and government satellite product line development.
1997-2025 DolnySlask.com Agencja Internetowa