ISBN-13: 9781119602514 / Angielski / Twarda / 2021 / 496 str.
ISBN-13: 9781119602514 / Angielski / Twarda / 2021 / 496 str.
PREFACENOMENCLATUREPART 1: FUNDAMENTAL OF SOFT SWITCHINGChapter 1 Introduction1.1 Requirement for three-phase power conversions1.1.1 Three-phase converters1.1.2 Switching frequency vs. conversion efficiency and power density1.1.3 Switching frequency and impact of soft-switching technology1.2 Concept of soft-switching technique1.2.1 Soft-switching types1.2.2 Soft-switching technique for three phase converters1.3 Applications of soft-switching to three-phase converters1.3.1 Renewable energy and power generation1.3.2 Energy storage systems1.3.3 Distributed FACTS devices1.3.4 Uninterruptible power supply1.3.5 Motor drives1.3.6 Fast EV Chargers1.4 The topics of this bookReferencesChapter 2 Basics of soft-switching three-phase converters2.1 Introduction2.2 Switching characteristics of three-phase converters2.2.1 Control of three-phase converters2.2.2 Switching transient process and switching loss2.2.3 Diode turn-off and reverse recovery2.2.4 Stray inductance on switching process2.2.5 Snubber2.3 Classification of soft-switching three-phase converters2.4 DC-side resonance converters2.4.1 Resonant DC link converters2.4.2 Active-clamped resonant DC-link (ACRDCL) converter2.4.3 ZVS-SVM active clamping three-phase converter2.4.3.1. Active clamping DC-DC converter2.4.3.2. Active-clamping three-phase converter2.5 AC-side resonance converters2.5.1 Auxiliary resonant commutated pole converter2.5.2 Coupled-inductor zero-voltage-transition (ZVT) inverter2.5.3 Zero-current-transition (ZCT) inverter2.6 Soft-switching inverter with TCM control2.7 SummaryReferencesChapter 3 Soft-switching PWM control for Active Clamped Three-phase Converters3.1 Introduction3.2 PWM of three-phase converters3.3 Edge-Aligned PWM3.4 ZVS converter circuit with EA-PWM3.4.1 Stage analysis3.4.2 ZVS conditions3.4.1.1 The 1st resonant stage3.4.1.2 The 2nd resonant stage3.4.1.3 Steady conditions3.4.3 Impact of PWM scheme and load on ZVS condition3.5 Control diagram of the converter with EA-PWM3.6 ZVS-SVM3.6.1 Vector sequence3.6.2 ZVS-SVM scheme3.6.3 Characteristics of the converter with ZVS-SVM3.7 SummaryReferencesPART 2: ZVS-SVM APPLIED TO THREE-PHASE RECTIFIERSChapter 4 Three-phase Rectifier with Compound Active Clamping Circuit4.1 Introduction4.2 Operation principle of CAC rectifier4.2.1 Space vector of three-phase grid voltage4.2.2 Space vector modulation of three-phase converter4.2.3 Switching scheme of CAC rectifier4.3 Circuit analysis4.3.1 Operation stage analysis4.3.2 Resonant stages analysis4.3.3 Steady state analysis4.3.4 Soft switching condition4.3.5 Control technique of compound active clamping three-phase rectifier4.4 Prototype design4.4.1 Specifications of a 40 kW rectifier4.4.2 Parameter design4.4.3 Experiment platform and testing results4.5 SummaryReferencesChapter 5 Three-phase Rectifier with Minimum Voltage Active Clamping Circuit5.1 Introduction5.2 Operation principle of MVAC rectifier5.2.1 Space vector modulation of three-phase converter5.2.2 Switching scheme of MVAC rectifier5.3 Circuit analysis of MVAC rectifier5.3.1 Operation stage analysis5.3.2 Resonant stages analysis5.3.3 Steady state analysis5.3.4 Soft switching condition5.3.5 Control technique of minimum voltage active clamping three-phase rectifier5.4 Prototype design5.4.1 Specifications of a 30 kW rectifier5.4.2 Parameter design5.4.3 Experiment platform and testing results5.5 SummaryReferencesPART 3: ZVS-SVM APPLIED TO THREE-PHASE GRID INVERTERSChapter 6 Three-phase Grid Inverter with Minimum Voltage Active Clamping Circuit6.1 Introduction6.2 Operation Principle of MVAC inverter6.2.1 Space vector of three-phase grid voltage6.2.2 Space vector modulation of three-phase inverter6.2.3 Switching scheme of MVAC inverter under unit power factor6.2.4 Generalized space-vector-modulation method of MVAC inverter with arbitrary output6.3 Circuit analysis6.3.1 Operation stage analysis6.3.2 Resonant stages analysis6.3.3 Steady state analysis6.3.4 Soft switching condition4.3.2 Control technique of MVAC inverter6.4 Design prototype6.5.1 Specifications of a 30 kW inverter6.5.2 Parameter design6.5.3 Experiment results6.5 SummaryReferenceChapter 7 Three-phase Inverter with Compound Active Clamping Circuit7.1 Introduction7.2 Scheme of ZVS SVM7.2.1 Switch commutations in main bridges of three-phase inverter7.2.2 Derivation of ZVS SVM7.3 Circuit analysis7.3.1 Operation stage analysis7.3.2 Resonant stages analysis7.3.3 Steady state analysis7.3.4 Soft switching condition7.3.5 Resonant time comparison7.4 Implementation of ZVS SVM7.4.1 Regulation of short circuit stage7.4.2 Implementation in digital controller7.4.3 Control block diagram with ZVS SVM7.5 Prototype design7.5.1 Specifications of a 30 kW inverter7.5.2 Parameter design7.5.3 Experiment platform and testing results7.6 SummaryReferencesChapter 8 Loss Analysis and Optimization of a Zero Voltage Switching Inverter8.1 Introduction8.2 Basic operation principle of the CAC ZVS inverter8.2.1 Operation stage analysis8.2.2 ZVS condition derivation8.3 Loss and dimension models8.3.1 Loss model of IGBT devices8.3.1.1 Conduction loss of IGBT devices8.3.1.2 Switching loss of the IGBT devices8.3.2 Loss and dimension models of resonant inductor8.3.3 Loss and dimension models of the filter inductor8.3.4 Dimension model of other components8.3.4.1 Clamping capacitor8.3.4.2 Heat sink8.4 Parameters optimization and design methodology8.4.1 Objective Function8.4.2 Constrained Conditions8.4.3 Optimization Design8.5 Prototype and experimental results8.6 SummaryReferencesChapter 9 Design of the Resonant Inductor with Air Gap9.1 Introduction9.2 Fundamental of Inductor with Air Gap9.3 Design Methodology9.3.1 Cross-section area of the core Ac9.3.2 Window area Ae9.3.3 Area-product Ap9.3.4 Turns of winding N9.3.5 Length of the air gap lg9.3.6 Winding loss Pdc9.3.7 Core loss Pcore9.3.8 Design procedure9.4 Design Example9.4.1 Barrel winding discussion9.4.1.1 Winding position discussion9.4.1.2 Winding thickness discussion9.4.2 Flat winding discussion9.4.2.1 Different pattern comparison9.4.2.2 Winding position discussion9.5 Design Verification9.5.1 Simulation verification9.5.2 Experimental verification9.6 SummaryReferencesPART 4: IMPACT OF SIC DEVICE ON SOFT-SWITCHING GRID INVERTERChapter 10 Soft Switching SiC Three-phase Grid Inverter10.1 Introduction10.2 Soft-switching three-phase inverter10.2.1 SVM scheme in hard switching inverter10.2.2 ZVS-SVM scheme in soft switching inverter10.2.3 Operation stages and ZVS condition of soft switching inverter10.2.3.1 Operation stages analysis10.2.3.2 ZVS condition derivation10.3 Efficiency comparison of hard switching SiC inverter and soft switching SiC inverter10.3.1 Parameters design of soft switching SiC inverter10.3.1.1 AC filter inductor10.3.1.2 Resonant parameters10.3.1.3 DC filter capacitor10.3.1.4 Clamping capacitor10.3.1.5 Cores selection10.3.1.6 Switching loss measurement10.3.2 Comparison of two SiC inverters10.3.2.1 Loss distributions10.3.2.2 Efficiency stiffness10.3.2.3 Passive components volumes10.3.3 Experimental verification10.3.3.1 Efficiency test 3110.3.3.2 Passive components volumes comparison10.4 Design of low stray inductance layout in soft switching SiC inverter10.4.1 Oscillation model10.4.2 Design of low stray inductance 7 in 1 SiC power module10.4.3 7 in 1 SiC power module prototype and testing results10.4.3.1 Stray inductance measurement10.4.3.2 Voltage stress comparison10.5 Design of low loss resonant inductor in soft switching SiC inverter10.5.1 Impact of distributed air-gap10.5.2 Optimal flux density investigation10.5.3 Optimal winding foil thickness investigation10.5.4 Resonant inductor prototypes and loss measurement10.6 SummaryReferencesChapter 11 Soft-switching SiC single-phase grid inverter with active power decoupling11.1 Introduction11.1.1 Modulation methods for single-phase inverter11.1.2 APD in single-phase grid inverter11.2 Operation principle11.2.1 Topology and switching scheme11.2.2 Stage analysis11.3 Circuit analysis11.3.1 Resonant stages analysis11.3.2 Steady state analysis11.3.3 Soft switching condition11.3.4 Short-circuit current11.4 Design prototype11.4.1 Rated parameters of a 1.5 kW inverter11.4.2 Parameter design11.4.3 Experimental platform and testing results11.5 SummaryReferencesChapter 12 Soft-switching SiC Three-phase Four-wire Converter12.1 Introduction12.2 Operation principle12.2.1 Commutations analysis12.2.2 Operation scheme12.2.3 Stage analysis12.3 Circuit analysis12.3.1 Resonant stage analysis12.3.2 Steady state analysis12.3.3 ZVS condition12.4 Design prototype12.4.1 Parameters design12.4.2 loss analysis12.4.3 Experimental results12.5 SummaryReferencesAPPENDIXA.1 Basic of SVMA.2 Switching patterns of SVMA.3 Switching patterns of ZVS-SVMA.4 Inverter loss modelsA.4.1 Loss model of hard switching three-phase grid inverterA.4.2 Loss model of soft switching three-phase grid inverterA.5 AC filter inductance calculationA.6 DC filter capacitance calculation
Dehong Xu, PhD, is Full Professor in College of Electrical Engineering at Zhejiang University.Rui Li, PhD, is Full Professor in the Department of Electrical Engineering, School of Electronics, Information and Electrical Engineering at Shanghai Jiao Tong University.Ning He, PhD, is Firmware Design Principal Engineer in Delta Electronics (Shanghai) Co., Ltd.Jinyi Deng is a PhD student in Power Electronics in the College of Electrical Engineering at Zhejiang University.Yuying Wu is a PhD student in Power Electronics in the College of Electrical Engineering at Zhejiang University.
1997-2024 DolnySlask.com Agencja Internetowa