Termin realizacji zamówienia: ok. 22 dni roboczych.
Darmowa dostawa!
Delivers comprehensive coverage of key subjects in self-assembly and nanotechnology, approaching these and related topics with one unified concept.
Designed for students and professionals alike, it explores a variety of materials and situations in which the importance of self-assembly nanotechnology is growing tremendously.
Provides clear schematic illustrations to represent the mainstream principles behind each topic.
7.6. Properties of Bio–mimetic Self–Assembled Aggregates.
7.7. Future Issues.
References.
PART II. NANOTECHNOLOGY.
8. IMPLICATIONS OF SELF–ASSEMBLY FOR NANOTECHNOLOGY.
8.1. General Concepts and Approach to Nanotechnology.
8.2. Self–Assembly and Nanotechnology Share the Same Building Units.
8.3. Self–Assembly and Nanotechnology Are Governed by the Same Forces.
8.4. Self–Assembly versus Manipulation for the Construction of Nanostructures.
8.5. Self–Aggregates and Nanotechnology Share the Same General Assembly Principles.
8.6. Concluding Remarks.
References.
9. NANOSTRUCTURED MATERIALS.
9.1. What Are Nanostructured Materials?
9.2. Intermolecular Forces During the Formation of Nanostructured Materials.
9.3. Sol Gel Chemistry.
9.4. General Self–Assembly Schemes for the Formation of Nanostructured Materials.
9.5. Micro–, Meso–, and Macroporous Materials.
9.6. Mesostructured and Mesoporous Materials.
9.7. Organic Inorganic Hybrid Mesostructured and Mesoporous Materials.
9.8. Microporous and Macroporous Materials.
9.9. Applications of Nanostructured and Nanoporous Materials.
9.10. Summary and Future Issues.
References.
10. NANOPARTICLES: METALS, SEMICONDUCTORS, AND OXIDES.
10.1. What are Nanoparticles?
10.2. Intermolecular Forces During the Synthesis of Nanoparticles.
10.3. Synthesis of Nanoparticles.
10.4. Properties of Nanoparticles.
10.5. Applications of Nanoparticles.
10.6. Summary and Future Issues.
References.
11. NANOSTRUCTURED FILMS.
11.1. What Is Nanostructured Film?
11.2. General Scheme for Nanostructured Films.
11.3. Preparation and Structural Control of Nanostructured Films.
11.4. Properties and Applications of Nanostructured Films.
11.5. Summary and Future Issues.
References.
12. NANOASSEMBLY BY EXTERNAL FORCES.
12.1. Force Balance and the General Scheme of Self–Assembly Under External Forces.
12.2. Colloidal Self–Assembly Under External Forces.
12.3. Molecular Self–Assembly Under External Forces.
12.4. Applications of Colloidal Aggregates.
12.5. Summary and Future Issues.
References.
13. NANOFABRICATION.
13.1. Self–Assembly and Nanofabrication.
13.2. Unit Fabrications.
13.3. Nanointegrated Systems.
13.4. Summary and Future Issues.
References.
14. NANODEVICES AND NANOMACHINES.
14.1. General Scheme of Nanodevices.
14.2. Nanocomponents: Building Units for Nanodevices.
14.3. Three Element Motions: Force Balance at Work.
14.4. Unit Operations.
14.5. Nanodevices: Fabricated Nanocomponents to Operate.
14.7. Summary and Future Issues.
References.
Index.
Yoon S. Lee, PhD, is a Scientific Information Analyst at Chemical Abstracts Service (a division of the ACS) where he indexes literature and builds databases for nanoscience and nanotechnology, specifically in the area of colloid and surface chemistry. After earning his PhD from Seoul National University in South Korea, Dr. Lee performed postdoctoral research at The Ohio State University and worked as a research chemist at Cognis. He has authored several articles on self–assembly and nanotechnology.
A practical, enlightening overview and explanation of self–assembly and nanotechnology
Self–assembly is an important method used in nanotechnology to construct objects from the nanoscale to microscale. A fabrication process in which nanostructures form naturally has the potential to be much cheaper than building the nanostructures manually. To encourage and facilitate exploration of these processes, Self–Assembly and Nanotechnology: A Force Balance Approach:
Explores a variety of materials and situations in which self–assembly nanotechnology is becoming increasingly important
Addresses the critical junction of two important fields: self–assembly and nanotechnology, with seven chapters on each field
Bridges the topics of self–assembly, colloids, and surfaces with nanotechnology
Approaches self–assembly, nanotechnology, and related topics with one unified concept force balance
Provides a concise and conceptual description of the fundamental forces involved in both self–assembly and nanotechnology
Includes clear schematic illustrations to represent the principles
Integrates recent discoveries and findings
This is an ideal text for courses that span different disciplines or different departments a very effective approach for teaching nanotechnology. Complete with references for further, more in–depth information at the end of each chapter, it is also a valuable resource for researchers and scientists, including chemical engineers, physical and materials scientists, and others.