• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2944077]
• Literatura piękna
 [1814251]

  więcej...
• Turystyka
 [70679]
• Informatyka
 [151074]
• Komiksy
 [35590]
• Encyklopedie
 [23169]
• Dziecięca
 [611005]
• Hobby
 [136031]
• AudioBooki
 [1718]
• Literatura faktu
 [225599]
• Muzyka CD
 [379]
• Słowniki
 [2916]
• Inne
 [443741]
• Kalendarze
 [1187]
• Podręczniki
 [166463]
• Poradniki
 [469211]
• Religia
 [506887]
• Czasopisma
 [481]
• Sport
 [61343]
• Sztuka
 [242115]
• CD, DVD, Video
 [3348]
• Technologie
 [219293]
• Zdrowie
 [98602]
• Książkowe Klimaty
 [124]
• Zabawki
 [2385]
• Puzzle, gry
 [3504]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7151]
Kategorie szczegółowe BISAC

Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling

ISBN-13: 9783030178598 / Angielski / Twarda / 2019 / 640 str.

Y. Zee Ma
Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling Y. Zee Ma 9783030178598 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling

ISBN-13: 9783030178598 / Angielski / Twarda / 2019 / 640 str.

Y. Zee Ma
cena 684,33
(netto: 651,74 VAT:  5%)

Najniższa cena z 30 dni: 655,41
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!
inne wydania
Kategorie:
Technologie
Kategorie BISAC:
Science > Energia
Technology & Engineering > Power Resources - Fossil Fuels
Science > Earth Sciences - Geology
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783030178598
Rok wydania:
2019
Wydanie:
2019
Ilość stron:
640
Waga:
1.26 kg
Wymiary:
24.77 x 16.51 x 5.08
Oprawa:
Twarda
Wolumenów:
01

Preface


1. Introduction and Overview

Part 1: Reservoir Characterization

2. Essential Reservoir Geology and Multi-Scales of Petroleum Reservoir Heterogeneities
2.1 Structural Controls on Petroleum Resources
2.2 Sequence Stratigraphy and Hydrocarbon Resources
2.3 Depositional Environments
2.4 Facies and Lithofacies
2.5 Petrophysical Properties
2.6 Subsurface Fluid Heterogeneities
2.7 Summary
Appendix 1: Large-Scale Tectonic Settings and Their Characteristics
Appendix 2: Hierarchy of Depositional Systems: Fluvial Architecture Example

3. Introduction to Petrophysical Reservoir Characterization
3.1 Porosity Characterization and Estimation
3.2 Clay Volume Analysis and Its Impacts on Other Petrophysical Parameters
3.3 Permeability Characterization and Estimation
3.4 Fluid Saturations Characterization and Estimation
3.5 Uncertainty Analysis in Petrophysical Analysis
3.6 Summary

4. Practical Seismic Reservoir Characterization
4.1 Seismic Data: Resolution and Coverage
4.2 Structural and Stratigraphic Interpretations
4.3 Reservoir Delineation, EOD Mapping and Seismic Facies Identifications
4.4 Reservoir Property Evaluation Using Seismic Data
4.5 Seismic Attribute Analysis and Integration for Reservoir Characterization
4.6 Summary
Appendix 1: Time-Frequency Representation of Seismic Data
Appendix 2: Amplitude Versus Offset (AVO): An Overview
Appendix 3: Overview of Forward Modeling and Seismic Inversions

5. Statistical and Data Analytical Reservoir Characterization
5.1 Common Descriptive Statistics for Reservoir Analysis
5.2 Sampling Bias in E&P and Mitigation Methods
5.3 Multivariate Statistical Data Analysis and Applications to Reservoir Analysis (Statistical Correlation, PCA, and Clustering Analysis)
5.4 Overview of Artificial Neural Networks and Example Applications
5.5 Bayesian Inference for Reservoir Characterization
5.6 Regression for Mapping and Modeling of Reservoir Properties
5.7 Advanced Regressions for Integrated Reservoir Characterization
5.8 Summary
Appendix 1: Lord's Paradox and Reconciling Mathematics and Reservoir Problems
Appendix 2: Impact of Interdependencies/collinearity on multiple linear regressions

6. Geostatistical Reservoir Characterization
6.1 Variogram and Spatial Correlation
6.2 Theoretical Variogram and Spatial Covariance Models
6.3 Calculating and Fitting Experimental Variograms
6.4 Interpreting Variograms of Reservoir Properties
6.5 Lithofacies Variography and Indicator Variogram
6.6 Cross-Variogram, Spatial Misalignment and Synchronization
6.7 Relationships between Variogram/Covariance Function and Spectrum
6.8 Summary

7. Integrated Facies and Lithofacies Analysis, Identification and Classification
7.1 Geological Interpretation of Facies
7.2 Lithofacies Classification Using Wireline Logs
7.3 Integration of Geological Facies, Seismically Derived Facies, Well-Log-Derived Facies and Core Facies
7.4 Summary

Part 2: Geological and Reservoir Modeling

8. Constructing a Reservoir-Model Framework
8.1 From Structural Elements to a Structural Model
8.2 From Stratigraphic Elements to a Stratigraphic Model
8.3 Building Depositional Geometrics into Geocellular Model

9. Geostatistical Modeling Methods
9.1 Estimation Methods
9.1.1 Simple Kriging, Ordinary Kriging, Nonstationary Kriging
9.1.2 Factorial Kriging and Decomposition of Sub-Processes
9.1.3 Cokriging and Collocated Cokriging
9.2 Stochastic Simulation
9.2.1 Spectral Simulations
9.2.2 Sequential Gaussian Simulation
9.3 Summary
Appendix 1: Ergodicity and Micro-Ergodicity in Stochastic Processes
Appendix 2: Stationarity, Local Stationarity and Intrinsic Random Functions
Appendix 3: Examples of Decompositions of Sub-Processes Using Factorial Kriging

10. Facies and Lithofacies Modeling
10.1 Definition of Lithofacies and Composite Lithofacies for Modeling
10.2 Lithofacies Spatial Trends and Probabilities
10.3 Lithofacies Modeling Methods
10.4 Constructing Facies and Lithofacies in a Reservoir Model
10.5 Multi-Level Modeling of Facies and Lithofacies
10.6 Summary

11. Porosity Modeling
11.1 Statistical Analysis of Porosity Data
11.2 Spatial Characterization of Porosity Distributions
11.3 Modeling Porosity
11.3.1. Using Kriging and Other Interpolation Methods
11.3.2 Using Stochastic Simulation
11.3.3 Trend-Integrated Modeling of Porosity
11.3.4 Seismically Integrated Co-Simulation of Porosity
11.3.5 Depositional-Geometry-Honored Porosity Modeling
11.3.6 Hierarchical Modeling of Porosity
11.3.7 Modeling Porosity with Multiple Constraints
11.4 Summary

12. Permeability Modeling
12.1 Statistical Analysis of Permeability Data
12.2 Permeability Modeling by Regression
12.3 Permeability Modeling by Cloud Transform
12.4 Permeability Modeling by Cokriging and Cosimulation
12.5 Summary

13. Fluid-Saturation Modeling
13.1 Fluid Distributions in a Reservoir
13.2 Data Sources for Fluid Characterization
13.3 Modeling Water Saturation
13.3.1 Using Methods of Sw-Height Functions
13.3.2 Using Cokriging and Cosimulation
13.4 Summary

14. Uncertainty Analysis and Volumetrics Evaluation
14.1 General Issues
14.1.1 Relationship between Variability and Uncertainty
14.1.2 Relationship between Uncertainty and Error
14.1.3 Measurement Uncertainty
14.1.4 Interpretation Uncertainty
14.1.5 Subsurface Fluid Uncertainty
14.1.6 Other Inference Uncertainties Related to Reservoir Analysis
14.1.7 Value of Information in Uncertainty Analysis
14.2 Uncertainty Quantification in Petroleum Resource Volumetrics
14.2.1 Critics on the Classical Volumetric Calculations
14.2.2 Analytical Estimation of Hydrocarbon Volumetrics
14.2.3 3D Model-Based Hydrocarbon Volumetrics
14.2.4 Defining Uncertainties of Input Parameters
14.2.5 Critics of Monte Carlo Simulation for Uncertainty Analysis
14.2.6 Integrated Uncertainty Quantification Workflow
14.2.7 Evaluating Uncertainty Workflow Results
14.2.8 Tranferring Static Uncertainties into Dynamic Uncertainty Evaluation
14.3 Decision Analysis
14.3.1 Known Knowns, Known Unknowns and Unknown Unknowns
14.3.2 Methods for Reducing Uncertainties
14.3.3 Decision Analysis Under Uncertainty in E&P
14.4 Summary
Appendix 1: Probability Distributions for Describing Uncertainties of Reservoir Variables

Part 3: Special and Advanced Topics

15. Naturally Fractured Reservoir Characterization and Modeling
15.1 Faulting and Fracturing in Subsurface Formations
15.2 Characterizing Fractured Formations
15.3 Construction of Discrete Fracture Networks (DFN)
15.4 From DFN to Continuous Reservoir Properties
15.5 Summary

16. Updating a Reservoir Model and Feedback Loop in Reservoir Modeling
16.1 Integrating New Data
16.2 Feedback Loop in Reservoir Modeling
16.3 Production Data Integration
16.4 4D Seismic Data Monitoring and Integration

17. Ranking Reservoir Models

18. Reservoir Model Upscaling, Simulation and Validation
18.1 Upscaling 3D Model Grids
18.2 Upscaling Categorical Variables
18.3 Upscaling Static Reservoir Properties
18.4 Mass-Preservation Upscaling
18.5 Upscaling Dynamic Reservoir Properties
18.6 Reservoir Simulation and Model Validations

19. Common and Uncommon Pitfalls in Integrated Reservoir Characterization and Modeling

20. Planning an Integrated Reservoir Characterization and Modeling Project<

21. Towards a Fully Integrated Reservoir Characterization, Modeling and Uncertainty Analysis for Petroleum Resource Management and Field Development

Dr. Ma is a scientific advisor for geosciences at Schlumberger, specialized in reservoir characterization, modeling and resource evaluation. In his over 30 years of experience, he has worked on research and application of statistics, data analytics, and geostatistics to integrated reservoir studies for major oil companies in Europe and the US and has provided technical consultancies and training worldwide. Dr. Ma has published over 100 technical papers or book chapters in petroleum geology, geophysics, engineering, geostatistics, applied statistics and economics, and has received numerous awards, including the Schlumberger's Gold Award and Chairman Award, and the Mathematical Geosciences’ Best Paper. Dr. Ma has earned a PhD in Mathematical Geology and Geoinformatics from Université de Lorraine (previously Institute National Polytechnique de Lorraine), France, and MSc in Geostatistics from École des Mines de Paris, France, and a BSc in Geology from China University of Geosciences.

Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.




Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia