• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Quantile Regression in Clinical Research: Complete Analysis for Data at a Loss of Homogeneity » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Quantile Regression in Clinical Research: Complete Analysis for Data at a Loss of Homogeneity

ISBN-13: 9783030828394 / Angielski / Twarda / 2022

Ton J. Cleophas; Aeilko H. Zwinderman
Quantile Regression in Clinical Research: Complete Analysis for Data at a Loss of Homogeneity Ton J. Cleophas Aeilko H. Zwinderman 9783030828394 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Quantile Regression in Clinical Research: Complete Analysis for Data at a Loss of Homogeneity

ISBN-13: 9783030828394 / Angielski / Twarda / 2022

Ton J. Cleophas; Aeilko H. Zwinderman
cena 362,27
(netto: 345,02 VAT:  5%)

Najniższa cena z 30 dni: 346,96
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania
Kategorie:
Nauka, Medycyna
Kategorie BISAC:
Medical > Research
Mathematics > Prawdopodobieństwo i statystyka
Computers > Data Science - Data Analytics
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783030828394
Rok wydania:
2022
Wydanie:
2021
Waga:
0.63 kg
Wymiary:
23.95 x 18.85 x 1.93
Oprawa:
Twarda
Wolumenów:
01

3. Separating quantiles, traditional and quantile-wise

4. Special case

Chapter 2 Mathematical models for separating quantiles from one another

            1.  Introduction

            2. Maximizing linear functions with the help of support vectors

            3. Maximizing linear function with the help of a quadratic Lagrangian multiplier method

            4. Maximizing linear function wit the help of simplex algorithms

            5. The intuition of quantile regression

 

Part I Univariate quantile regression

Chapter 3 Quantile regressions for data at a loss of homogeneity

            1. Introduction

            2. Traditional linear and robust linear regression analysis

            3. Quantile linear regression

            4. Conclusion  

Chapter 4 Quantile regressions for bimodal outcome data

            1. Introduction 

            2. ARIMA (autoregressive integrating moving average) autoregression methodology

            3. Quantile regressions for autoregressive data

            4. Conclusion

Chapter 5 Chi-square test for trends versus quantile regression (Chap.15)

            1. Introduction

            2. Chi-square testing for trend analysis

            3. Quantile regressions for trend analysis

            4. Conclusion

Chapter 6 One way anova for trends versus quantile regression

            1. Introduction

            2. One way anova for testing event rates

            3. Quantile regression for testing event rates

            4. Conclusion

Chapter 7 Poisson regressions for event rates versus quantile regressions

            1. Introduction

            2. Poisson regression for testing event rates

            3. Quantile regressions for testing event rates

            4. Conclusion

Chapter 8 Poisson regressions for event outcomes per population versus quantile regression

            1. Introduction

            2. Poisson regression for event outcomes per population

            3. Quantile regression for event outcomes per population

            4. Conclusion

 

Chapter 9 Quasi-likelihood regressions versus quantile regressions

            1. Introduction

            2. Quasi-likelihood regressions

            3. Quantile regressions

            4. Conclusion

Chapter 10 Binary Poisson regression and Negative binomial regression versus quantile regression

            1. Introduction

            2. Binary Poisson regression and negative binomial regression

            3. Quantile regression

            4. Conclusion

Chapter 11 Paired McNemar versus quantile regression

            1. Introduction

            2. Mc Nemar's tests for analysis of paired binary data

            3. Quantile regression for analysis of paired binary data

            4. Conclusion

 

Part II Multiple variables quantile regression

Chapter 12 Multiple ordinary least squares (OLS) versus quantile regressions

            1. Introduction

            2. Gene expression levels predict drug efficacy scores

            3. Ordinary least squares regression versus quantile regression for the purpose

            4. Conclusion

Chapter 13 Partial correlations versus quantile regressions

            1. Introduction

            2. Exercise and calorieintake and their interaction predict weightloss

            3. Partial correlations and qunatile regressions for analysis

            4. Conclusion

Chapter 14 Quantile regression to study Corona-mortality

            1. Introduction

            2. Obesity, age, urbanization, capita income predict corona deaths

            3. Ordinary least squares as compared to quantile regressions for analysis

            4. Conclusion

Chapter 15 Graphical approach to quantile regressions and continuous outcomes

            1. Introduction

            2. Traditional multiple variables linear regression for analysis

            3. Quantile regression for analysis

            4. Conclusion

Chapter 16 Graphical approach to quantile regressions and binary outcomes

            1. Introduction

            2. Laboratory values predict survival from sepsis

            3. Logistic regression versus quantile regression for analysis

            4. Conclusion

Chapter 17 Loglinear models for incident risks versus quantile regressions

            1. Introduction

            2. Loglinear models for incident risks

            3. Quantile regression for the same

            4. Conclusion

Chapter 18 Adjusted Poisson regressions for event rates versus quantile regressions

            1. Introduction

            2. Adjusted Poisson regression for event rates

            3. Quantile regressions for event rates

            4. Conclusion

Chapter 19 Poisson event outcomes per person per period of time versus quantile regression

            1. Introduction

            2. Poisson event outcomes per person per period of time

            3. Quantile regression event outcomes per person per period of time

            4. Conclusion

Chapter 20 Restructuring categories into multiple binary variables versus quantile regression

            1.Introduction

            2. Restructuring categories into multiple binary variables

            3. Quantile regressions

            4. Conclusions

Chapter 21 Variance components analysis versus quantile regressions

            1. Introduction

            2. Variance components analysis

            3. Quantile regressions

            4. Conclusion

Chapter 22 Contrast coefficients analysis versus quantile regressions

            1. Introduction

            2. Contrast coefficients

            3. Quantile regressions

            4. Conclusion

Chapter 23 Dichotomous multiple regression versus quantile regression

            1. Introduction

            2. Dichotomous multiple regression

            3. Quantile regression

            4. Conclusion

Chapter 24 Probit regression versus quantile regressions

            1. Introduction

            2. Probit regression

            3. Quantile regression

            4. Conclusion

Chapter 25 Summaries and abstracts

Index

(200-250 pages)

Ton J Cleophas is internist-clinical pharmacologist at the Department of Medicine Albert Schweitzer Hospital Dordrecht the Netherlands. He is also professor of Statistics and member of the Scientific Committee of the European College of Pharmaceutical Medicine Lyon France. He is particularly interested in machine learning methodologies and published many complete-overview-textbooks of the subject.


Aeilko H Zwinderman is professor of Statistics and Chair of the Department of Biostatistics and Epidemiology at the University of Amsterdam the Netherlands. His current work focuses on development and validation of multivariable models, particularly in genetic research, and he is a major developer of penalized canonical analysis. 

Quantile regression is an approach to data at a loss of homogeneity, for example (1) data with outliers, (2) skewed data like corona - deaths data, (3) data with inconstant variability, (4) big data. In clinical research many examples can be given like circadian phenomena, and diseases where spreading may be dependent on subsets with frailty, low weight, low hygiene, and many forms of lack of healthiness. Stratified analyses is the laborious and rather explorative way of analysis, but quantile analysis is a more fruitful, faster and completer alternative for the purpose. Considering all of this, we are on the verge of a revolution in data analysis. The current edition is the first textbook and tutorial of quantile regressions for medical and healthcare students as well as recollection/update bench, and help desk for professionals. Each chapter can be studied as a standalone and covers one of the many fields in the fast growing world of quantile regressions. Step by step analyses of over 20 data files stored at extras.springer.com are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology(2000-2002). From their expertise they should be able to make adequate selections of modern quantile regression methods for the benefit of physicians, students, and investigators.

 



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia