ISBN-13: 9781119748069 / Angielski / Twarda / 2025 / 480 str.
ISBN-13: 9781119748069 / Angielski / Twarda / 2025 / 480 str.
Preface xv1 Physico-Tribo-Mechanical and Adhesion Behaviour of Plasma Treated Steel and Its Alloys: A Critical Review 1Jitendra K. Katiyar and Vinay Kumar Patel1.1 Introduction 21.2 Single Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 31.3 Double Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 141.4 Tribological Properties of Plasma Treated Steel and Its Grades 191.5 Conclusions 27References 282 Debonding on Demand of Adhesively Bonded Joints: A Critical Review 33Mariana D. Banea2.1 Introduction 332.2 Design of Structures with Debondable Adhesives 342.3 Methodologies for Adhesive Debonding on Demand 352.3.1 Debonding on Demand of Adhesively Bonded Joints Using Reversible/Reworkable Adhesive Systems 352.3.1.1 Reversible Adhesive Technologies Based on Diels-Alder Chemistry 362.3.1.2 Supramolecular Polymers 362.3.2 Electrically Induced Debonding of Adhesive Joints 372.3.3 Debonding on Demand of Adhesively Bonded Joints Using Reactive Fillers 382.3.3.1 Nanoparticles 382.3.3.2 Microparticles 402.4 Summary 44Acknowledgements 45References 453 Chitosan-Catechol Conjugates-A Novel Class of Bioadhesive Polymers: A Critical Review 51Loveleen Kaur and Inderbir Singh3.1 Introduction 513.1.1 Polymers Used for Developing Mucoadhesive Drug Delivery Systems 523.1.2 Chitosan and Its Associated Problems 533.2 Preparation Methods for Chitosan-Catechol Conjugates 543.3 Characterization 553.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 553.3.2 Nuclear Magnetic Resonance (NMR) 563.3.3 Scanning Electron Microscopy (SEM) 573.3.4 Differential Scanning Calorimetry (DSC) 573.3.5 X-ray Diffraction (XRD) 573.4 Properties of Chitosan-Catechol Conjugates 573.4.1 Stability 573.4.2 Permeation 583.4.3 Mucoadhesion 583.4.4 Solubility 593.4.5 Antibacterial Property 593.4.6 Mechanical Strength 603.4.7 Biocompatibility 603.4.8 Bioink for 3D Printing 603.5 Applications of Chitosan-Catechol Conjugates 613.5.1 Nanoparticles 613.5.2 Hydrogels 623.5.3 Microspheres 623.5.4 Sponges 643.5.5 Films 643.6 Patent Updates 643.7 Summary and Future Aspects 64Acknowledgement 65Conflict of Interest 65References 654 Adhesives in the Footwear Industry: A Critical Review 69Elena Orgilés-Calpena, Francisca Arán-Aís, Ana M. Torró-Palau and Miguel Angel Martínez Sánchez4.1 Introduction 694.2 The Footwear Industry 704.2.1 Substrates and Adhesives 704.2.2 Surface Treatments 734.2.3 Adhesives Requirements 774.2.4 Bonding Stages in Footwear Manufacturing Process 784.2.5 Debonding Real Cases in Footwear 814.3 Sustainable Adhesives for the Footwear Industry 824.3.1 Water-Based Adhesives 824.3.2 Hot-Melt Adhesives 844.4 Future Trends in Footwer Adhesives 864.5 Summary 88Acknowledgements 88References 895 Nanocomposite Polymer Adhesives: A Critical Review 93S. Kenig, H. Dodiuk, G. Otorgust and S. Gomid5.1 Introduction 935.2 Nanostructuring of Adhesives - Methodology 945.3 Nanoparticles Types - Basic Compositions and Properties 955.3.1 Nanoclays 955.3.2 Nanosilica (NS) 965.3.3 POSS - Polyhedral Oligomeric Silsesquioxanes 975.3.4 Carbon Nanotubes (CNTs) 975.3.5 Graphene Nanoplatelets (GNPs) and Expanded Graphite (EG) 995.3.6 Inorganic Fullerenes (IFs) and Inorganic Nanotubes (INTs) of Tungsten Disulfide (WS2) 1015.4 Adhesives Types - Basic Compositions and Properties 1025.4.1 Epoxies 1025.4.2 Polyurethanes (PUs) 1025.4.3 Polyimides (PIs) 1035.4.4 Silicones 1035.4.5 Acrylics 1045.5 Nanocomposite Adhesives-Composition-Properties Relationships, Reinforcement and Toughening Mechanisms 1045.5.1 Introduction 1045.5.2 Epoxy/Nanoclay Composite Adhesives 1055.5.2.1 Bulk Properties 1055.5.2.2 Adhesive Properties 1075.5.3 Epoxy/Silica Nanocomposite Adhesives 1085.5.3.1 Bulk Properties 1085.5.3.2 Adhesive Properties 1105.5.4 Epoxy/CNT Nanocomposite Adhesives 1105.5.4.1 Bulk Properties 1105.5.4.2 Adhesive Properties 1135.5.5 Epoxy/POSS Nanocomposite Adhesives 1155.5.5.1 Bulk Properties 1155.5.5.2 Adhesive Properties 1185.5.6 Epoxy/GNPs and EG Nanocomposite Adhesives 1185.5.6.1 Bulk Properties 1195.5.6.2 Adhesive Properties 1225.5.7 Epoxy/WS2 Nanocomposite Adhesives 1255.5.8 Polyurethane/POSS Nanocomposite Adhesives 1265.5.8.1 Bulk Properties 1265.5.8.2 Adhesive Properties 1275.5.9 PU/WS2 Nanocomposite Adhesives 1285.5.10 Polyimide/NCs Nanocomposite Adhesives 1285.5.10.1 Bulk properties 1285.5.10.2 Adhesive Properties 1295.5.11 Polyimide/CNTs Nanocomposite Adhesives 1295.5.11.1 Bulk Properties 1295.5.11.2 Adhesive Properties 1325.5.12 PU/NCs Nanocomposite Adhesives 1325.5.13 Polyurethane/CNTs/GNPs Nanocomposite Adhesives 1325.5.13.1 Bulk Properties 1325.5.13.2 Adhesive Properties 1335.5.14 PU/WS2 Nanocomposite Adhesives 1345.5.15 Acrylic/Nanosilica Nanocomposite Adhesives 1355.5.16 Acrylic/Titania and Alumina NPs Nanocomposite Adhesives 1365.5.17 Acrylic/NCs Nanocomposite Adhesives 1365.5.18 Acrylic/POSS Nanocomposite Adhesives 1365.5.19 Silicone/WS2 Nanocomposite Adhesives 1375.6 Fracture and Toughening Mechanisms 1375.6.1 Fracture Surfaces 1385.6.2 Toughening Micro and Nanomechanisms 1385.7 Nanocomposite Adhesives - Applications, Challenges and Opportunities 1435.7.1 Applications of Nanocomposite Adhesives 1465.7.1.1 Electronics and Nanoelectronics 1465.7.1.2 Aerospace 1465.7.1.3 Biomedical 1475.8 Summary 148References 1486 Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review 169Endu Sekhar Srinadhu, Radhey Shyam, Jatinder Kumar, Dinesh P R Thanu, Mingrui Zhao and Manish Keswani6.1 Introduction 1696.1.1 Ion-Solid Interactions 1706.1.2 Computer Simulations of Ion Beam - Solid Interactions 1716.2 Ion Beam Treatment of Polymers 1726.3 Analysis Techniques to Analyze Post Ion Beam Treated Target Surfaces 1726.3.1 X-ray Diffraction 1736.3.2 Scanning Electron Microscopy 1736.3.3 Fourier Transform Infrared Spectroscopy 1746.3.4 Raman Spectroscopy 1746.3.5 UV Spectroscopy 1756.3.6 X-ray Photoelectron Spectroscopy (XPS) 1756.3.7 Wettability Measurements 1766.3.8 Atomic Force Microscopy (AFM) 1776.4 Biomedical Applications 1786.4.1 Poly(lactic acid) (PLA) 1786.4.2 Poly(L-lactic acid) (PLLA) 1806.4.3 Poly(L-lactide) (PLA), Poly(D, L-Lactide-coglycolide) (PDLG) and Poly(L-lactide-cocaprolactone) (PLC) Films 1806.5 Microelectronics Applications 1826.5.1 Bisphenol A polycarbonate (PC) 1826.5.2 Aluminum Films on Bisphenol A Polycarbonate (PC) 1846.5.3 Indium Tin Oxide (ITO) Films on Bisphenol A Polycarbonate (PC) 1856.5.4 Polyimide Films 1876.5.5 Cu/Polyimide Films 1876.5.6 Multiple Ion Beam Treatment of Polymers 1886.6 Summary 190References 1907 Non-Wettable Surfaces - From Natural to Artificial and Applications: A Critical Review 195Andrew Terhemen Tyowua, Msugh Targema and Emmanuel Etim Ubuo7.1 Introduction 1957.2 The Basic Wetting Models 1987.3 Non-Wettable Surfaces 2007.3.1 Non-Wettable Surfaces in Nature: Their Importance to Plants and Animals 2007.3.2 Artificial Non-Wettable Surfaces 2067.3.3 Preparation of Non-Wettable Surfaces 2087.3.4 Properties of Non-Wettable Surfaces 2147.4 Applications of Non-Wettable Surfaces and Challenges 2177.4.1 Non-Wettable Surfaces for Water Collection and Transportation 2177.4.2 Non-Wettable Surfaces as Self-Cleaning and Icephobic Surfaces 2187.4.3 Non-Wettable Surfaces for Biomedical Applications 2197.5 Summary and Future Prospects 220Acknowledgements 220References 2218 Plasma Oxidation of Polyolefins - Course of O/C Ratio from Unmodified Bulk to Surface and Finally to CO2 in the Gas Phase: A Critical Review 233J. Friedrich, M. JabBoDska and G. Hidde8.1 Introduction 2348.2 Chemistry of Polyolefin Oxidation 2358.2.1 Binding Energies of Covalent Bonds in Polyolefins 2358.2.2 Thermal Oxidation and Auto-Oxidation on the Surface of Paraffins 2368.2.3 Decarboxylation and Emission of CO2 2378.2.4 Formation of Gaseous Low-Molecular Weight Products on Thermal or Photo-Oxidation in Analogy to Oxygen Plasma Treatment 2388.3 Processes at Polyolefin Surfaces 2398.3.1 Formation of Gaseous Low-Molecular Weight Products on Exposure to Oxygen Plasma 2398.3.2 Introduction of Oxygen-Containing Groups at the Surface of Polyolefins on Exposure to Oxygen Plasma 2408.3.3 Formation and Characterization of LMWOM 2438.3.3.1 LMWOM Formation by Fragmentation and Oxidation of Macromolecules 2438.3.3.2 LMWOM Formation by Re-Deposition of Fragments or Plasma Polymerization 2458.4 Depth Profiles at the Surface of Polyolefins 2468.4.1 Analytical Depth Profiles 2468.4.2 Measured Oxidation Depth Profiles 2478.4.2.1 Plasma Parameters Influencing the Depth Profile and Its Range 2478.4.2.2 Angle-Resolved XPS. 2478.4.2.3 Dynamic SIMS 2478.4.2.4 Sputtering 2488.4.2.5 Post-Plasma Oxidation 2488.5 Modes of the Oxidation Process at Polyolefin Surfaces on Exposure to Oxygen Plasma 2498.6 Summary and Conclusions 251References 2539 Procedures for the Characterization of Wettability and Surface Free Energy of Textiles - Use, Abuse, Misuse and Proper Use: A Critical Review 259Thomas Bahners and Jochen S. Gutmann9.1 Introduction 2609.2 Peculiarities of Textile Substrates 2629.2.1 Geometric Hierarchy 2629.2.2 Attempts to Model the Textile Geometry 2669.3 Characterization of Fabrics - Drop Tests 2709.3.1 Contact Angle Measurements 2709.3.2 Characterization by Roll-Off Angle 2729.3.3 Drop Penetration Tests 2739.3.4 Characterization of Fabrics - Wicking or Rising Height Test 2779.3.5 Fabric Characterization Based on The Wilhelmy Method 2789.4 Contact Angle Measurement on Single Fibers 2799.5 Methods for the Characterization of Fiber Bundles 2809.5.1 The Washburn Approach - Wilhelmy Wicking Method 2809.5.2 Inverse Gas Chromatography (IGC) 2829.5.3 Using IGC as an Alternative Concept to Characterize Adhesion-Related Surface Modification 2839.6 Summary and Concluding Remarks 284References 28810 Bioadhesive Nanoformulations--Concepts and Preclinical Studies: A Critical Review 295Monika Joshi, Ravi Shankar and Kamla Pathak10.1 Introduction to Nanoformulations 29510.2 Types of Nanoformulations 29610.2.1 Liposomes 29610.2.2 Ethosomes 29710.2.3 Niosomes 29710.2.4 Nanoparticles 29810.2.4.1 Polymeric Nanoparticles 29810.2.4.2 Lipid Nanoparticles 29810.2.5 Polymeric Micelles (PMs) 29810.2.6 Nanoemulsions 29910.2.7 Dendrimers 29910.3 Bioadhesion: Physiological and Pharmaceutical Aspects 29910.4 Bioadhesive Polymers 30010.4.1 Non-Specific Bioadhesive Polymers (Old Generation) 30010.4.1.1 Cationic Polymers 30010.4.1.2 Anionic Polymers 30010.4.2 Specific Bioadhesive Polymers 30110.4.2.1 Thiolated Polymers 30110.4.2.2 Lectin-Based Polymers 30110.5 Mechanism of Bioadhesion 30210.6 Bioadhesive Nanoformulations and Their Supremacy Over Other Systems 30210.6.1 Buccal/Sublingual Administration 30310.6.2 Intranasal Bioadhesive Nanoformulations for Various Therapeutic Purposes 30610.6.3 Ocular Administration 31010.6.4 Oral Administration 31310.6.5 Summary 318References 31911 Laser-Assisted Tailoring of Surface Wettability -Fundamentals and Applications: A Critical Review 331Alina Peethan, V. K. Unnikrishnan, Santhosh Chidangil and Sajan D. George11.1 Introduction 33211.1.1 Laser-Matter Interaction 33211.1.2 Wettability and Laser-Assisted Tailoring of Surface Wettability 33411.2 Nanosecond Laser Patterning 33711.3 Picosecond Laser Patterning 34111.4 Femtosecond Laser Patterning 34411.5 Applications of laser textured surfaces 35011.5.1 Biomedical applications 35011.5.2 Water harvesting 35111.5.3 Anti-Bacterial Activity 35311.5.4 Spectroscopic Applications 35311.5.5 Other Applications 35411.6 Summary 357Conflict of Interest 358Acknowledgments 358References 35812 Improved Mathematical Models of Thermal Residual Stresses in Functionally Graded Adhesively Bonded Joints: A Critical Review 367M. Kemal Apalak and M. Didem Demirbas12.1 Introduction 36812.2 Mechanical and Physical Relations 37412.3 Heat Transfer Model 37712.4 Thermal Initial and Boundary Conditions 38012.5 Elasticity Equations in Terms of Displacements 38212.6 Finite-Difference Discretization 38512.7 Implementation of Boundary Conditions 38712.8 Results 38912.9 Summary and Conclusions 408Acknowledgement 409References 41013 Adhesion of Colloids and Bacteria to Porous Media: A Critical Review 417Runwei Li, Changfu Wei, Hefa Cheng and Gang Chen13.1 Introduction 41713.2 Adhesion Theory 41813.2.1 Dupré Energy of Adhesion 41813.2.2 Lifshitz-van der Waals Forces 42113.2.3 Lewis Acid/Base Forces 42213.2.4 Hydration Forces 42413.2.5 Electrical Double Layer Forces 42513.2.6 Quantitative Structure-Activity Relationship (QSAR) Analysis 42613.2.7 Capillary Forces 42613.3 Adhesion of Colloids and Bacteria at Interfaces 42813.3.1 Adhesion at the Liquid-Solid Interface 42813.3.2 Adhesion at the Air-Water Interface 43113.3.2.1 Water Structure and Hydrogen Bonding 43113.3.2.2 Air-Water Interface Charges 43413.3.2.3 Impact of Surfactants 43513.3.2.4 Air-Water Interface in a Porous Medium 43713.3.2.5 Force Balance at the Air-Water Interface 43813.3.2.6 Impact of Air-Water Interface on Adhesion to Porous Media 43913.4 Adhesion Theory Implementations 44013.4.1 Water Saturation and Air-Water Interface in Porous Media 44013.4.2 Liquid-Gas-Solid Three-Phase Interface and Particle Transport 44113.4.3 Force Quantification 44313.4.4 Atomic Force Microscopy Measurements 44513.4.5 Linkage of Interactions and Transport 44613.4.6 Surfactant Attachment at the Air-Water Interface 44813.5 Summary 450Acknowledgments 450References 451
Kashmiri Lal Mittal??was employed by the IBM Corporation from 1972 through 1993. Currently, he is teaching and consulting worldwide in the broad areas of adhesion as well as surface cleaning. He has received numerous awards and honors including the title of doctor honoris causa from Maria Curie-Sk??odowska University, Lublin, Poland. He is the editor of more than 130 books dealing with adhesion measurement, adhesion of polymeric coatings, polymer surfaces, adhesive joints, adhesion promoters, thin films, polyimides, surface modification surface cleaning, and surfactants. Dr. Mittal is also the Founding Editor of the journal??Reviews of Adhesion and Adhesives.
1997-2024 DolnySlask.com Agencja Internetowa