ISBN-13: 9781119767442 / Angielski / Twarda / 2022 / 688 str.
ISBN-13: 9781119767442 / Angielski / Twarda / 2022 / 688 str.
List of Contributors xixPreface xxiiiAuthor Biographies xxviiPart I Chemistry and Production of Lactic Acid, Lactide, and Poly(Lactic Acid) 11 Production and Purification of Lactic Acid and Lactide 3Wim Groot, Jan van Krieken, Olav Sliekersl, and Sicco de Vos1.1 Introduction 31.2 Lactic Acid 41.2.1 History of Lactic Acid 41.2.2 Physical Properties of Lactic Acid 41.2.3 Chemistry of Lactic Acid 41.2.4 Production of Lactic Acid by Fermentation 51.2.5 Downstream Processing/Purification of Lactic Acid 81.2.6 Quality/Specifications of Lactic Acid 101.3 Lactide 101.3.1 Physical Properties of Lactide 101.3.2 Production of Lactide 111.3.3 Purification of Lactide 131.3.4 Quality and Specifications of Polymer-Grade Lactide 141.3.5 Concluding Remarks on Polymer-Grade Lactide 16References 162 Aqueous Solutions of Lactic Acid 19Carl T. Lira and Lars Peereboom2.1 Introduction 192.2 Structure of Lactic Acid 192.3 Vapor Pressure of Anhydrous Lactic Acid and Lactide 192.4 Oligomerization in Aqueous Solutions 202.5 Equilibrium Distribution of Oligomers 212.6 Vapor-Liquid Equilibrium 232.7 Density of Aqueous Solutions 252.8 Viscosity of Aqueous Solutions 252.9 Summary 26References 263 Industrial Production of High-Molecular-Weight Poly(Lactic Acid) 29Anders Södergård, Mikael Stolt, and Saara Inkinen3.1 Introduction 293.2 Lactic-Acid-Based Polymers by Polycondensation 303.2.1 Direct Condensation 313.2.2 Solid-State Polycondensation 323.2.3 Azeotropic Dehydration 333.3 Lactic Acid-Based Polymers by Chain Extension 343.3.1 Chain Extension with Diisocyanates 343.3.2 Chain Extension with Bis-2-Oxazoline 363.3.3 Dual Linking Processes 363.3.4 Chain Extension with Bis-Epoxies 363.4 Lactic-Acid-Based Polymers by Ring-Opening Polymerization 373.4.1 Polycondensation Processes 373.4.2 Lactide Manufacturing 373.4.3 Ring-Opening Polymerization 39References 404 Design and Synthesis of Different Types of Poly(Lactic Acid)/Polylactide Copolymers 45Ann-ChristineAlbertsson, Indra Kumari Varma, Bimlesh Lochab, Anna Finne-Wistrand, Sangeeta Sahu, and Kamlesh Kumar4.1 Introduction 454.2 Comonomers with Lactic Acid/Lactide 474.2.1 Glycolic Acid/Glycolide 474.2.2 Poly(Alkylene Glycol) 484.2.3 delta-Valerolactone and ß-Butyrolactone 514.2.4 epsilon-Caprolactone 514.2.5 1,5-Dioxepan-2-One 524.2.6 Trimethylene Carbonate 524.2.7 Poly(N-Isopropylacrylamide) 524.2.8 Alkylthiophene (P3AT) 534.2.9 Polypeptide 534.3 Functionalized PLA 544.4 Macromolecular Design of Lactide-Based Copolymers 554.4.1 Graft Copolymers 574.4.2 Star-Shaped Copolymers 594.4.3 Periodic Copolymers 604.5 Properties of Lactide-Based Copolymers 624.6 Degradation of Lactide Homo-and Copolymers 634.6.1 Drug Delivery from Lactide-Based Copolymers 644.6.2 Radiation Effects 65References 655 Preparation, Structure, and Properties of Stereocomplex-Type Poly(Lactic Acid) 73Neha Mulchandani, Yoshiharu Kimura, and Vimal Katiyar5.1 Introduction 735.2 Stereocomplexation in Poly(Lactic Acid) 735.3 Crystal Structure of sc-PLA 745.4 Formation of Stereoblock PLA 755.4.1 Single-Step Process 755.4.2 Stepwise ROP 765.4.3 Chain Coupling Method 775.5 Stereocomplexation in Copolymers 795.5.1 Stereocomplexation in Random and Alternating Lactic Acid or Lactide-Based Polymers 795.5.2 sc-PLA-PCL Copolymers 805.5.3 sc-PLA-PEG Copolymers 805.6 Stereocomplex PLA-Based Composites 815.7 Advances in Stereocomplex-PLA 825.8 Conclusions 83References 83Part II Properties 876 Structures and Phase Transitions of PLA and Its Related Polymers 89Hai Wang and Kohji Tashiro6.1 Introduction 896.2 Structural Study of PLA 896.2.1 Preparation of Crystal Modifications of PLA 896.2.2 Crystal Structure of the alpha Form 916.2.3 Crystal Structure of the delta Form 926.2.4 Crystal Structure of the ß Form 936.2.5 Structure of the Mesophase 946.3 Thermally Induced Phase Transitions 956.3.1 Phase Transition in Cold Crystallization 956.3.2 Phase Transition in the Melt Crystallization 956.3.3 Mechanically Induced Phase Transition 966.4 Microscopically-viewed Structure-Mechanical Properties of PLA 986.5 Structure and Formation of PLLA/PDLA Stereocomplex 1006.5.1 Reconsideration of the Crystal Structure 1006.5.2 Experimental Support of P3 Structure Model 1036.5.3 Formation Mechanism of Stereocomplex 1046.6 PHB and Other Biodegradable Polyesters 1066.6.1 Poly(3-Hydroxybutyrate) (PHB) 1066.6.2 Polyethylene Adipate (PEA) 1096.7 Future Perspectives 110Acknowledgements 110References 1107 Optical and Spectroscopic Properties 115Isabel M. Marrucho7.1 Introduction 1157.2 Absorption and Transmission of UV-Vis Radiation 1157.3 Refractive Index 1187.4 Specific Optical Rotation 1197.5 Infrared and Raman Spectroscopy 1197.5.1 Infrared Spectroscopy 1207.5.2 Raman Spectroscopy 1257.6 1H and 13C NMR Spectroscopy 127References 1318 Crystallization and Thermal Properties 135Luca Fambri and Claudio Migliaresi8.1 Introduction 1358.2 Crystallinity and Crystallization 1368.3 Crystallization Regime 1408.4 Fibers 1428.5 Commercial Polymers and Products 1448.6 Degradation and Crystallinity 146Acknowledgments 148References 1489 Rheology of Poly(Lactic Acid) 153John R. Dorgan9.1 Introduction 1539.2 Fundamental Chain Properties from Dilute Solution Viscometry 1549.2.1 Unperturbed Chain Dimensions 1549.2.2 Real Chains 1549.2.3 Solution Viscometry 1559.2.4 Viscometry of PLA 1569.3 Processing of PLA: General Considerations 1589.4 Melt Rheology: An Overview 1599.5 Processing of PLA: Rheological Properties 1609.6 Conclusions 165Appendix 9.A Description of the Software 166References 16610 Mechanical Properties 169Mohammadreza Nofar, Gabriele Perego, and Gian Domenico Cella10.1 Introduction 16910.2 General Mechanical Properties and Molecular Weight Effect 17010.2.1 Tensile and Flexural Properties 17010.2.2 Impact Resistance 17110.2.3 Hardness 17210.3 Temperature Effect 17210.4 Relaxation and Aging 17310.5 Annealing 17410.6 Orientation 17610.7 Stereoregularity 17910.8 Self-ReinforcedPLA Composites 18010.9 PLA Nanocomposites 18010.10 Copolymerization 18110.11 Plasticization 18110.12 PLA Blends 18210.13 Conclusions 186References 18611 Mass Transfer 191Uruchaya Sonchaeng and Rafael Auras11.1 Introduction 19111.2 Background on Mass Transfer in Polymers 19311.3 Mass Transfer Properties of Neat PLA Films 19411.3.1 Mass Transfer of Gases 19411.3.2 Mass Transfer of Oxygen 19911.3.3 Mass Transfer of Water Vapor 20111.3.4 Mass Transfer of Organic Vapors 20311.4 Mass Transfer Properties of Modified PLA 20511.4.1 PLA Stereocomplex and PLA Blends 20611.4.2 PLA Nanocomposites 20711.4.3 Other PLA Modifications 20711.4.4 PLA in Other Forms 20711.5 Final Remarks 208Acknowledgments 208References 20812 Migration and Interaction with Contact Materials 217Herlinda Soto-Valdez and Elizabeth Peralta12.1 Introduction 21712.2 Migration Principles 21712.3 Legislation 21812.4 Migration and Toxicological Data of Lactic Acid, Lactide, Dimers, and Oligomers 21912.4.1 Lactic Acid 21912.4.2 Lactide 22412.4.3 Oligomers 22512.5 EDI of Lactic Acid 22612.6 Other Potential Migrants from PLA 22712.7 Conclusions 227References 228Part III Processing and Conversion 23113 Processing of Poly(Lactic Acid) 233Loong-Tak Lim, Tim Vanyo, Jed Randall, Kevin Cink, and Ashwini K. Agrawal13.1 Introduction 23313.2 Properties of PLA Relevant to Processing 23313.3 Modification of PLA Properties by Process Aids and Other Additives 23513.4 Drying and Crystallizing 23713.5 Extrusion 23913.6 Injection Molding 24113.7 Film and Sheet Casting 24513.8 Stretch Blow Molding 24913.9 Extrusion Blown Film 25113.10 Thermoforming 25213.11 Melt Spinning 25413.12 Solution Spinning 25813.13 Electrospinning 26113.14 Filament Extrusion and 3D-Printing 26513.15 Conclusion: Prospects of PLA Polymers 266References 26714 Blends 271Ajay Kathuria, Sukeewan Detyothin, Waree Jaruwattanayon, Susan E. M. Selke, and Rafael Auras14.1 Introduction 27114.2 PLA Nonbiodegradable Polymer Blends 27214.2.1 Polyolefins 27214.2.2 Vinyl and Vinylidene Polymers and Copolymers 27914.2.3 Rubbers and Elastomers 28514.2.4 PLA/PMMA Blends 28714.3 PLA/Biodegradable Polymer Blends 28914.3.1 Polyanhydrides 28914.3.2 Vinyl and Vinylidene Polymers and Copolymers 28914.3.3 Aliphatic Polyesters and Copolyesters 29714.3.4 Aliphatic-Aromatic Copolyesters 30314.3.5 Elastomers and Rubbers 30514.3.6 Poly(Ester Amide)/PLA Blends 30714.3.7 Polyethers and Copolymers 30714.3.8 Annually Renewable Biodegradable Materials 30914.4 Plasticization of PLA 32214.5 Conclusions 326References 32715 Foaming 341Laurent M. Matuana15.1 Introduction 34115.2 Plastic Foams 34115.3 Foaming Agents 34215.3.1 Physical Foaming Agents 34215.3.2 Chemical Foaming Agents 34215.4 Formation of Cellular Plastics 34315.4.1 Dissolution of Blowing Agent in Polymer 34315.4.2 Bubble Formation 34315.4.3 Bubble Growth and Stabilization 34415.5 Plastic Foams Expanded with Physical Foaming Agents 34415.5.1 Microcellular Foamed Polymers 34415.5.2 Solid-State Batch Microcellular Foaming Process 34515.5.3 Microcellular Foaming in a Continuous Process 35315.6 PLA Foamed with Chemical Foaming Agents 35815.6.1 Effects of CFA Content and Type 35815.6.2 Effect of Processing Conditions 35915.7 Mechanical Properties of PLA Foams 36015.7.1 Batch Microcellular Foamed PLA 36015.7.2 Extrusion of PLA 36115.7.3 Microcellular Injection Molding of PLA 36215.8 Foaming of PLA/Starch and Other Blends 362References 36316 Composites 367Tanmay Gupta, Vijay Shankar Kumawat, Subrata Bandhu Ghosh, Sanchita Bandyopadhyay-Ghosh, and Mohini Sain16.1 Introduction 36716.2 PLA Matrix 36716.3 Reinforcements 36816.3.1 Natural Fiber Reinforcement 36816.3.2 Synthetic Fiber Reinforcement 37016.3.3 Organic Filler Reinforcement 37016.3.4 Inorganic Filler Reinforcement 37116.3.5 Laminated/Structural Composites 37216.4 Nanocomposites 37416.5 Surface Modification 37516.5.1 Filler Surface Modification 37516.5.2 Compatibilizing Agent 37616.5.3 Composite Surface Modification 37716.6 Processing 37716.6.1 Conventional Processing 37716.6.2 3D Printing 37816.7 Properties 37916.7.1 Mechanical Properties 37916.7.2 Thermal Properties 38216.7.3 Flame Retardancy 38216.7.4 Degradation 38316.7.5 Shape Memory Properties 38316.8 Applications 38416.8.1 Biomedical Applications 38516.8.2 Packaging Applications 38716.8.3 Automotive Applications 38716.8.4 Sensing and Other Electronic Applications 38816.9 Future Developments and Concluding Remarks 390References 39017 Nanocomposites: Processing and Mechanical Properties 411Suprakas Sinha Ray17.1 Introduction 41117.2 Nanoclay-Containing PLA Nanocomposites 41217.3 Carbon-Nanotubes-Containing PLA Nanocomposites 41417.4 Graphene-Containing PLA Nanocomposites 41617.5 Nanocellulose-Containing PLA Nanocomposites 41717.6 Other Nanoparticle-Containing PLA Nanocomposites 41817.7 Mechanical Properties of PLA-Based Nanocomposites 41917.8 Possible Applications and Future Prospects 421Acknowledgment 422References 42218 Mechanism of Fiber Structure Development in Melt Spinning of PLA 425Nanjaporn Roungpaisan, Midori Takasaki, Wataru Takarada, and Takeshi Kikutani18.1 Introduction-Fundamentals of Structure Development in Polymer Processing 42518.2 High-speed Melt Spinning of PLLAs with Different d-Lactic Acid Content 42618.2.1 Wide-angle X-ray Diffraction 42618.2.2 Birefringence 42718.2.3 Differential Scanning Calorimetry 42818.2.4 Modulated-DSC and Lattice Spacing 42918.3 High-speed Melt-Spinning of Racemic Mixture of PLLA and PDLA 43018.3.1 Stereocomplex Crystal 43018.3.2 Melt Spinning of PLLA/PDLA Blend 43018.3.3 WAXD 43118.3.4 Differential Scanning Calorimetry 43218.3.5 In Situ WAXD upon Heating 43218.4 Bicomponent Melt Spinning of PLLA and PDLA 43318.4.1 Sheath-Core and Islands-in-the-Sea Configurations 43318.4.2 Birefringence 43418.4.3 DSC 43418.4.4 Post Annealing 43518.5 Concluding Remarks 436References 437Part IV Degradation, Environmental Impact, and End of Life 43919 Photodegradation and Radiation Degradation 441Wataru Sakai and Naoto Tsutsumi19.1 Introduction 44119.2 Mechanisms of Photodegradation 44119.2.1 Photon 44119.2.2 Photon Absorption 44219.2.3 Photochemical Reactions of Carbonyl Groups 44319.3 Mechanism of Radiation Degradation 44319.3.1 High-Energy Radiation 44319.3.2 Basic Mechanism of Radiation Degradation 44419.4 Photodegradation of PLA 44419.4.1 Fundamental Mechanism 44419.4.2 Photooxidation Degradation 44619.4.3 High-Energy Photo-Irradiation 44719.4.4 Photosensitized Degradation of PLA 44719.4.5 Photodegradation of PLA Blends 44919.5 Radiation Degradation of PLA 44919.6 Irradiation Effects on Biodegradability 45119.7 Modification and Composites of PLA 452References 45220 Thermal Degradation 455Haruo Nishida20.1 Introduction 45520.2 Thermal Degradation Behavior of PLLA Based on Weight Loss 45520.2.1 Diverse Mechanisms 45520.2.2 Factors Affecting the Thermal Degradation Mechanism 45620.2.3 Thermal Stabilization 45720.3 Kinetic Analysis of Thermal Degradation 45820.3.1 Single-Step Thermal Degradation Process 45820.3.2 Complex Thermal Degradation Process 45920.4 Kinetic Analysis of Complex Thermal Degradation Behavior 46020.4.1 Two-Step Complex Reaction Analysis of PLLA in Blends 46020.4.2 Multistep Complex Reaction Analysis of Commercially Available PLLA 46120.5 Thermal Degradation Behavior of PLA Stereocomplex: scPLA 46320.6 Control of Racemization 46420.7 Conclusions 465References 46521 Hydrolytic Degradation 467Hideto Tsuji21.1 Introduction 46721.2 Degradation Mechanism 46721.2.1 Molecular Degradation Mechanism 46821.2.2 Material Degradation Mechanism 47921.2.3 Degradation of Crystalline Residues 48521.3 Parameters for Hydrolytic Degradation 48821.3.1 Effects of Surrounding Media 48821.3.2 Effects of Material Parameters 49021.4 Structural and Property Changes During Hydrolytic Degradation 49821.4.1 Fractions of Components 49821.4.2 Crystallization 49821.4.3 Mechanical Properties 49921.4.4 Thermal Properties 49921.4.5 Surface Properties 50021.4.6 Morphology 50021.5 Applications of Hydrolytic Degradation 50021.5.1 Material Preparation 50021.5.2 Recycling of PLA to Its Monomer 50221.6 Conclusions 503References 50322 Enzymatic Degradation 517Ken'ichiro Matsumoto, Hideki Abe, Yoshihiro Kikkawa, and Tadahisa Iwata22.1 Introduction 51722.1.1 Definition of Biodegradable Plastics 51722.1.2 Enzymatic Degradation 51722.2 Enzymatic Degradation of PLA Films 51922.2.1 Structure and Substrate Specificity of Proteinase K 51922.2.2 Enzymatic Degradability of PLLA Films 51922.2.3 Enzymatic Degradability of PLA Stereoisomers and Their Blends 52022.2.4 Effects of Surface Properties on Enzymatic Degradability of PLLA Films 52122.3 Enzymatic Degradation of Thin Films 52522.3.1 Thin Films and Analytical Techniques 52522.3.2 Crystalline Morphologies of Thin Films 52522.3.3 Enzymatic Adsorption and Degradation Rate of Thin Films 52622.3.4 Enzymatic Degradation of LB Film 52622.3.5 Application of Selective Enzymatic Degradation 52922.4 Enzymatic Degradation of Lamellar Crystals 53022.4.1 Enzymatic Degradation of PLLA Single Crystals 53022.4.2 Thermal Treatment and Enzymatic Degradation of PLLA Single Crystals 53222.4.3 Single Crystals of PLA Stereocomplex 53322.5 Recent Advances in Characterization of Enzymes that Degrade PLAs Including PDLA and Related Copolymers 53422.5.1 alphaß-Hydrolase 53522.5.2 Lipases and Cutinase-Like Enzymes 53522.5.3 Polyhydroxyalkanoate Depolymerases 53622.5.4 Enhancement of Biodegradability of PLAs 53622.5.5 Control of Enzymatic Degradation of PLAs 53722.6 Future Perspectives 537References 53723 Environmental Footprint and Life Cycle Assessment of Poly (Lactic Acid) 541Amy E. Landis, Shakira R. Hobbs, Dennis Newby, Ja'Maya Wilson, and Talia Pincus23.1 Introduction to LCA and Environmental Footprints 54123.1.1 Life Cycle Assessment 54123.1.2 Uncertainty in LCA 54223.2 Life Cycle Considerations for PLA 54223.2.1 The Life Cycle of PLA 54223.2.2 Energy Use and Global Warming 54423.2.3 Environmental Trade-Offs 54423.2.4 Waste Management 54523.2.5 End of Life 54623.3 Review of Biopolymer LCA Studies 54623.3.1 Cradle-to-Gate and Cradle-to-Grave LCAs 54623.3.2 End-of-Life LCAs 54723.4 Improving PLA's Environmental Footprint 55323.4.1 Agricultural Management 55323.4.2 Feedstock Choice 55423.4.3 Energy 55423.4.4 Design for End of Life 555References 55524 End-of-Life Scenarios for Poly(Lactic Acid) 559Anibal Bher, Edgar Castro-Aguirre, and Rafael Auras24.1 Introduction 55924.2 Transition from a Linear to a Circular Economy for Plastics 55924.3 Waste Management System 56124.4 End-of-Life Scenarios for PLA 56424.4.1 Prevention and Source Reduction 56524.4.2 Reuse 56624.4.3 Recycling 56624.4.4 Biodegradation 56924.4.5 Incineration with Energy Recovery 57224.4.6 Landfill 57324.5 LCA of End-of-Life Scenario for PLA 57424.6 Final Remarks 575References 575Part V Applications 58125 Medical Applications 583Shuko Suzuki and Yoshito Ikada25.1 Introduction 58325.2 Minimal Requirements for Medical Devices 58325.2.1 General 58325.2.2 PLA as Medical Implants 58425.3 Preclinical and Clinical Applications of PLA Devices 58525.3.1 Fibers 58525.3.2 Meshes 58825.3.3 Bone Fixation Devices 58925.3.4 Micro-and Nanoparticles, and Thin Coatings 59525.3.5 Scaffolds 59725.4 Conclusions 598References 59826 Packaging and Consumer Goods 605Hayati Samsudin and Fabiola Iñiguez-Franco26.1 Introduction: Polylactic Acid (PLA) in Packaging and Consumer Goods 60526.2 Food and Beverage 60626.2.1 Evolution of PLA in the Food and Beverage Market 60626.2.2 Growing Interest in PLA Serviceware 60726.3 Distribution Packaging 61226.4 Other Consumer Goods Automotive 61326.5 Other Consumer Goods 61326.6 Challenges and Final Remarks 614References 61527 Textile Applications 619Masatsugu Mochizuki27.1 Introduction 61927.2 Manufacturing, Properties, and Structure of PLA Fibers 61927.2.1 PLA Fiber Manufacture 61927.2.2 Properties of PLA Fibers and Textile 61927.2.3 Effects of Structure on Properties 62027.2.4 PLA Stereocomplex Fibers 62127.3 Key Performance Features of PLA Fibers 62127.3.1 Biodegradability and the Biodegradation Mechanism 62127.3.2 Moisture Management 62327.3.3 Antibacterial/Antifungal Properties 62327.3.4 Low Flammability 62427.3.5 Weathering Stability 62427.4 Potential Applications 62527.4.1 Geotextiles 62527.4.2 Industrial Fabrics 62527.4.3 Filters 62627.4.4 Towels and Wipes 62627.4.5 Home Furnishings 62727.4.6 Clothing and Personal Belongings 62727.4.7 3D-Printing Filament 62827.5 Conclusions 628References 62828 Environmental Applications 631Akira Hiraishi and Takeshi Yamada28.1 Introduction 63128.2 Application to Water and Wastewater Treatment 63128.2.1 Application as Sorbents 63128.2.2 Application to Nitrogen Removal 63328.3 Application to Methanogenesis 63728.3.1 Anaerobic Digestion 63728.3.2 Methanogenic Microbial Community 63728.4 Application to Bioremediation 63828.4.1 Significance of PLA Use 63828.4.2 Bioremediation of Organohalogen Pollution 63828.4.3 Other Applications 63928.5 Concluding Remarks and Prospects 640Acknowledgments 641References 641Index 645
RAFAEL A. AURAS, Professor, School of Packaging, College of Agriculture & Natural Resources, Michigan State University, USA.LOONG-TAK LIM, Professor, Department of Food Science, University of Guelph, Canada.SUSAN E. M. SELKE, Professor Emeritus, School of Packaging, College of Agriculture & Natural Resources, Michigan State University, USA.HIDETO TSUJI, Professor, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Japan.
1997-2025 DolnySlask.com Agencja Internetowa