ISBN-13: 9781119279075 / Angielski / Twarda / 2019 / 512 str.
ISBN-13: 9781119279075 / Angielski / Twarda / 2019 / 512 str.
About the Authors xiiiPreface xvAcknowledgments xix1 Introduction 11.1 Photothermal Spectroscopy 11.2 Basic Processes in Photothermal Spectroscopy 31.3 Photothermal Spectroscopy Methods 51.4 Application of Photothermal Spectroscopy 91.5 Illustrative History and Classification of Photothermal Spectroscopy Methods 101.5.1 Nature of the Photothermal Effect 101.5.2 Photoacoustic Spectroscopy 111.5.3 Single-Beam Photothermal Lens Spectroscopy 141.5.4 Photothermal Z-scan Technique 181.5.5 Photothermal Interferometry 201.5.6 Two-Beam Photothermal Lens Spectroscopy 251.5.7 Photothermal Lens Microscopy 271.5.8 Photothermal Deflection, Refraction, and Diffraction 311.5.9 Photothermal Mirror 381.5.10 Photothermal IR Microspectroscopy 411.5.11 Photothermal Radiometry 441.5.12 Historic Summary 471.6 Some Important Features of Photothermal Spectroscopy 48References 502 Absorption, Energy Transfer, and Excited State Relaxation 572.1 Factors Affecting Optical Absorption 572.2 Optical Excitation 632.2.1 Kinetic Treatment of Optical Transitions 632.2.2 Nonradiative Transitions 692.3 Excited State Relaxation 722.3.1 Rotational and Vibrational Relaxation 732.3.2 Electronic States and Transitions 782.3.3 Electronic State Relaxation 802.4 Relaxation Kinetics 852.5 Nonlinear Absorption 882.5.1 Multiphoton Absorption 902.5.2 Optical Saturation of Two-Level Transitions 912.5.3 Optical Bleaching 932.5.4 Response Times During Optical Bleaching 952.5.5 Optical Bleaching of Organic Dyes 962.5.6 Relaxation for Impulse Excitation 982.5.7 Multiple Photon Absorption 992.6 Absorbed Energy 101References 1043 Hydrodynamic Relaxation: Heat Transfer and Acoustics 1073.1 Local Equilibrium 1073.2 Thermodynamic and Optical Parameters in Photothermal Spectroscopy 1083.2.1 Enthalpy and Temperature 1083.2.2 Energy and Dynamic Change 1113.3 Conservation Equations 1113.4 Hydrodynamic Equations 1163.5 Hydrodynamic Response to Photothermal Excitation 1183.5.1 Solving the Hydrodynamic Equations 1193.5.2 Thermal Diffusion Mode 1213.5.3 Fourier-Laplace Solutions for the Thermal Diffusion Equation 1223.5.4 Propagating Mode 1243.5.5 Summary of Hydrodynamic Mode Solutions 1253.6 Density Response to Impulse Excitation 1263.6.1 One-Dimensional Case 1273.6.2 Two-Dimensional Cylindrically Symmetric Example 1293.6.3 Coupled Solutions 1373.7 Solutions Including Mass Diffusion 1383.8 Effect of Hydrodynamic Relaxation on Temperature 1433.9 Thermodynamic Fluctuation 1453.10 Noise Equivalent Density Fluctuation 1463.11 Summary 150Appendix 3.A Thermodynamic Parameter Calculation 150Appendix 3.B Propagating Mode Impulse Response for Polar Coordinates in Infinite Media 151References 1534 Temperature Change, Thermoelastic Deformation, and Optical Elements in Homogeneous Samples 1554.1 Temperature Change from Gaussian Excitation Sources 1564.1.1 Thermal Diffusion Approximation 1564.1.2 Gaussian Laser Excitation of Optically Thin Samples 1574.1.3 Short Pulse Laser Excitation 1594.1.4 Continuous Laser Excitation 1604.1.4.1 Laser Heating 1604.1.4.2 On-axis Temperature Change 1614.1.4.3 Post-excitation Cooling 1624.1.5 Chopped Laser Excitation 1654.1.6 On-axis Temperature Change for Periodic Excitation 1674.1.7 Gaussian Laser Excitation of Absorbing and Opaque Samples 1684.1.7.1 Short Pulse Laser Excitation 1694.1.7.2 Continuous Laser Excitation 1704.1.8 Thermal Gratings 1704.2 Thermodynamic Parameters 1744.2.1 Thermodynamic Parameters Affecting Temperature 1744.2.2 Convection Heat Transfer 1784.3 Thermoelastic Displacement 1804.3.1 Continuous Laser Excitation 1814.3.2 Short Pulse Laser Excitation 1824.4 Optical Elements 1824.4.1 Phase Shift and Optical Path Length Difference 1844.4.2 Phase Shift and Optical Path Length Difference Under Thermoelastic Deformation 1854.4.3 Deflection Angle 1894.4.4 Thermal Lens Focal Length 1904.4.5 Grating Strength 1934.5 Temperature-dependent Refractive Index Change 1944.5.1 Density and Temperature Dependence of Refractive Index 1954.5.2 Population Dependence on Refractive Index 1994.5.3 Soret Effect 2004.5.4 Other Factors Affecting Refractive Index 2034.6 Temperature Change and Thermoelastic Displacement from Top-hat Excitation Sources 2044.6.1 Temperature Change from Top-hat Excitation Sources 2044.6.2 Thermoelastic Displacement from Top-hat Excitation Sources 2054.7 Limitations 2064.7.1 Excitation Beam Waist Radius Changes 2074.7.2 Effects of Scattering and Optically Thick Samples 2084.7.3 Finite Extent Sample Effects 2104.7.4 Accounting for Finite Cell Radius 211References 2155 Photothermal Spectroscopy in Homogeneous Samples 2195.1 Photothermal Interferometry 2195.2 Photothermal Deflection 2245.2.1 Deflection Angle for Pulsed Laser Excitation 2245.2.1.1 Collinear Probe Geometry 2245.2.1.2 Crossed-beam Probe Geometry 2265.2.2 Deflection Angle for Continuous and Chopped Laser Excitation 2275.2.2.1 Continuous Excitation with Parallel Probe Geometry 2275.2.2.2 Continuous Excitation with Crossed-probe Geometry 2305.2.2.3 Chopped Excitation with Parallel Probe 2305.2.3 Deflection Angle Detection 2315.2.3.1 Probe Laser Beam Waist Effect 2315.2.3.2 Straightedge Apparatus 2345.2.3.3 Position Sensing Detectors 2355.2.3.4 Other Methods to Detect Deflection Angle 2365.2.3.5 Differential Deflection Angle 2385.3 Thermal Lens Focal Length 2395.3.1 Pulsed Excitation Thermal Lens Focal Length 2395.3.1.1 Time-dependent Focal Length 2395.3.1.2 Sample Path Length Limitations 2405.3.1.3 Crossed-beam Arrangement 2425.3.2 Continuous and Chopped Excitation Thermal Lens Focal Length 2435.3.2.1 Continuous Excitation 2435.3.2.2 Sample Path Length Limitations 2435.3.2.3 Crossed-beam Geometry 2445.3.2.4 Chopped Excitation 2455.3.3 Focal Length for Periodic Excitation 2455.4 Detecting the Thermal Lens 2485.4.1 Signal for Symmetric Lens 2485.4.2 Signal for Different x and y Focal Lengths 2505.4.3 Lock-in Amplifier or Pulse Height Detected Signal 2535.4.4 Signal Development with Large Apertures 2545.4.5 Signal Development Based on Image Analysis and Other Optical Filters 2555.5 Types of Photothermal Lens Apparatuses 2585.5.1 Single-laser Apparatus 2585.5.2 Differential Single-laser Apparatus 2605.5.3 Two-laser Apparatus 2615.6 Two-laser Photothermal Lens Spectroscopy 2675.6.1 Excitation Wavelength Dependence in Two-laser Photothermal Spectroscopy 2685.7 Differential Two-laser Apparatuses 2695.8 Diffraction Effects 2715.8.1 Probe Laser Diffraction Effects for Pulsed Excitation 2725.8.2 Probe Laser Diffraction Effects for Continuous Excitation 2785.8.3 Diffraction Effects for Single-laser Photothermal Lens 2815.8.4 Effect of Diffraction on the Thermal Lens Enhancement Factor 281References 2836 Analytical Measurement and Data Processing Considerations 2856.1 Sensitivity of Photothermal Spectroscopy 2866.1.1 Photothermal Lens Enhancement Factors 2866.1.2 Relative Sensitivity of Photothermal Lens and Deflection Spectroscopies 2916.1.3 Relative Sensitivity of Photothermal Lens and Photothermal Interferometry Spectroscopies 2926.1.4 Relating Photothermal Signals to Absorbance and Enhancement 2956.1.5 Intrinsic Enhancement of Two-Laser Methods 2956.1.6 Enhancement Limitations 2976.1.7 The Choice of Solvents for Photothermal Lens Measurements 2996.1.7.1 Aqueous Solutions of Electrolytes 3006.1.7.2 Aqueous Solutions of Surfactants and Water-Soluble Polymers 3026.1.7.3 Organo-aqueous Mixtures 3036.1.7.4 Soret Effect in Mixed Media 3056.2 Optical Instrumentation for Analysis 3066.2.1 Dynamic Reserve 3066.2.2 Differential Measurements 3076.2.3 Spectroscopic Measurement 3106.2.4 Fiber Optics 3136.3 Processing Photothermal Signals 3166.3.1 Analog Signal Processing 3206.3.2 Digital Signal Processing 3216.4 Photothermal Data Processing 3266.4.1 Excitation Irradiance Curves 3276.4.2 Calibration 3276.4.3 Metrological Parameters of Photothermal Lens Spectrometry 3296.4.3.1 Accuracy of Photothermal Lens Measurements 3296.4.3.2 Instrumental and Method Detection Limits 3296.4.3.3 Photothermal Limits of Detection 3316.4.3.4 Photothermal Error Curves 3336.5 Considerations for Trace Analysis 3366.5.1 Unstability of Dilute Solutions 3376.5.2 Sources of Losses and Contamination 3376.5.3 Changes in Sensitivity and Selectivity Due to Chemistry at the Trace Level 3396.5.4 Statistical Features at the Level of Low Concentrations 3406.6 Tracking Down and Reducing Noise 340References 3427 Analytical Applications 3477.1 Areas of Analytical Application 3477.2 Applications to Stationary Homogeneous Samples 3487.2.1 Photothermal Techniques 3487.2.2 Gas Phase Samples 3517.2.3 Liquid Samples 3617.3 Application to Disperse Solutions 3647.3.1 Nano-sized Particles and Nanocomposite Materials 3647.3.2 Analysis of Biological Samples 3657.4 Photothermal Spectroscopy Detection in Chromatography and Flow Analysis 3707.4.1 Temperature Change in Flowing Samples 3717.4.2 Deflection Angles and Inverse Focal Lengths in Flowing Samples 3737.4.2.1 Isotropic and Turbulent Flow 3737.4.2.2 Laminar Flow 3757.4.3 Applications in Chromatography 3767.4.3.1 Gas Chromatography and Flowing Gas Analysis 3837.4.3.2 Liquid Phase 3837.4.4 Application to Flow Injection Analysis 3857.5 Photothermal Spectroscopy Detection in Capillary Electrophoresis 3877.5.1 Influence of Electrophoretic Flow Rate 3897.5.2 Effect of the Composition of the Background Electrolyte Solution on the Sensitivity 3937.5.3 Applications 3947.6 Photothermal Spectroscopy Detection in Microanalytical and Microfluidic Systems 4027.7 Determination of Parameters of Reactions 4047.7.1 Determination of Thermodynamic Parameters and Constants 4047.7.2 Chemical Reaction Control and Real-time Monitoring 4067.7.3 Kinetic Parameters of Reactions 4067.8 Excitation and Relaxation Kinetics 4087.8.1 Relaxation Kinetics and Quantum Yield Studies 4097.8.2 Photodynamic Irradiance-dependent Signal Studies 4147.8.3 Optical Bleaching in Organic Dye Molecules 4177.8.4 Optical Bleaching Effects in Pulsed Laser Photothermal Spectroscopy 422References 4238 Photothermal Spectroscopy of Heterogeneous Samples 4358.1 Types of Heterogeneity 4358.2 Apparatuses for Photothermal Deflection 4368.3 Surface Absorption 4378.3.1 Thermal Diffusion at Surfaces 4378.3.2 Temperature Change from Pulsed Excitation 4388.3.3 Temperature Change from Continuous Excitation 4388.3.4 Temperature Change from Periodic Excitation 4398.4 Thermal Diffusion in Volume Absorbing Samples 4418.4.1 Volume Temperature Change for Pulsed Excitation 4418.4.2 Periodic Excitation of Volume Absorbers 4428.5 Temperature Change in Layered Samples 4438.5.1 Periodic Excitation of Layered Samples 4458.5.2 Pulsed Excitation of Thick-layered Samples 4478.6 Surface Point Source 4498.7 Gaussian Beam Excitation of Surfaces 4528.8 Gaussian Beam Excitation of Transparent Materials 4558.9 Excitation of Layered Samples with Gaussian Beams 4578.10 Deflection Angles with Oscillating Gaussian Excitation 4608.11 Photothermal Reflection 4638.12 Experiment Design for Photothermal Deflection 4638.13 Application to Determination of Solid Material Properties 4658.13.1 Bulk Properties 4668.13.1.1 Thermo-optical Properties 4688.13.1.2 Quantum Yields 4698.13.2 Solid Surfaces 4708.14 Applications to Chemical Analysis 4718.14.1 Application to Surface Determination and Optical Sensing Materials 4718.14.2 Applications to Gel and Thin-layer Chromatography 4728.14.3 Other Application to Applied Chemical Analysis 4738.14.4 Application to Biological Analysis 474References 476Index 481
Stephen E. Bialkowski, PhD, is Professor of Chemical Analysis at Utah State University with interests in atmospheric chemistry, spectroscopy, nonlinear optics, and chemometrics.Nelson G. C. Astrath, PhD, is Associate Professor in the Department of Physics at Universidade Estadual de Maringá with interests in photothermal sciences and light and matter interaction effects.Mikhail A. Proskurnin, PhD, is Professor in Analytical Chemistry in the Department of Chemistry at Lomonosov Moscow State University with interests in photonics, analytical spectroscopy, and photothermal spectroscopy in analytical and physical chemistry and applied materials science and biomedical research.
1997-2024 DolnySlask.com Agencja Internetowa