• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Photorefractive Materials for Dynamic Optical Recording: Fundamentals, Characterization, and Technology » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950116]
• Literatura piękna
 [1816336]

  więcej...
• Turystyka
 [70365]
• Informatyka
 [151382]
• Komiksy
 [36157]
• Encyklopedie
 [23168]
• Dziecięca
 [611655]
• Hobby
 [135936]
• AudioBooki
 [1800]
• Literatura faktu
 [225852]
• Muzyka CD
 [388]
• Słowniki
 [2970]
• Inne
 [446238]
• Kalendarze
 [1179]
• Podręczniki
 [166839]
• Poradniki
 [469514]
• Religia
 [507394]
• Czasopisma
 [506]
• Sport
 [61426]
• Sztuka
 [242327]
• CD, DVD, Video
 [3461]
• Technologie
 [219652]
• Zdrowie
 [98967]
• Książkowe Klimaty
 [123]
• Zabawki
 [2482]
• Puzzle, gry
 [3735]
• Literatura w języku ukraińskim
 [264]
• Art. papiernicze i szkolne
 [7903]
Kategorie szczegółowe BISAC

Photorefractive Materials for Dynamic Optical Recording: Fundamentals, Characterization, and Technology

ISBN-13: 9781119563778 / Angielski / Twarda / 2020 / 352 str.

Jaime Frejlich
Photorefractive Materials for Dynamic Optical Recording: Fundamentals, Characterization, and Technology Frejlich, Jaime 9781119563778 Wiley - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Photorefractive Materials for Dynamic Optical Recording: Fundamentals, Characterization, and Technology

ISBN-13: 9781119563778 / Angielski / Twarda / 2020 / 352 str.

Jaime Frejlich
cena 728,85
(netto: 694,14 VAT:  5%)

Najniższa cena z 30 dni: 722,88
Termin realizacji zamówienia:
ok. 30 dni roboczych.

Darmowa dostawa!
Kategorie:
Nauka, Chemia
Kategorie BISAC:
Technology & Engineering > Optics
Technology & Engineering > Telecommunications
Wydawca:
Wiley
Język:
Angielski
ISBN-13:
9781119563778
Rok wydania:
2020
Dostępne języki:
Ilość stron:
352
Waga:
0.88 kg
Wymiary:
25.65 x 18.03 x 2.29
Oprawa:
Twarda
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

List of Figures xiList of Tables xxxiiiPreface xxxvAcknowledgments xxxviiPart I Fundamentals 1Introduction 31 Electro-Optic Effect 51.1 Light Propagation in Crystals 51.1.1 Wave Propagation in Anisotropic Media 51.1.2 General Wave Equation 61.1.3 Index Ellipsoid 61.2 Tensorial Analysis 81.3 Electro-Optic Effect 81.4 Perovskite Crystals 111.5 Sillenite Crystals 111.5.1 Index Ellipsoid 111.5.1.1 Index Ellipsoid with Applied Electric Field 131.5.2 Other Cubic Noncentrosymmetric Crystals 151.5.3 Lithium Niobate 151.5.4 KDP-(KH2PO4) 161.5.5 Bismuth Tellurium Oxide-Bi2TeO5 (BTeO) 171.6 Concluding Remarks 172 Photoactive Centers and Photoconductivity 192.1 Photoactive Centers: Deep and Shallow Traps 202.1.1 Cadmium Telluride 212.1.2 Sillenite-Type Crystals 222.1.2.1 Doped Sillenites 252.1.3 Lithium Niobate 282.1.4 Bismuth Telluride Oxide: Bi2TeO5 282.2 Luminescence 282.3 Photoconductivity 292.3.1 Localized States: Traps and Recombination Centers 292.3.2 Theoretical Models 322.3.2.1 One-Center Model 352.3.2.2 Two-Center/One-Charge Carrier Model 372.3.2.3 Dark Conductivity and Dopants 402.4 Photovoltaic Effect 402.4.1 Photovoltaic Crystals 412.4.1.1 Lithium Niobate and Other Ferroelectric Crystals 412.4.1.2 Some Photovoltaic Nonferroelectric Materials 412.4.2 Light Polarization-Dependent Photovoltaic Effect 432.5 Nonlinear Photovoltaic Effect 442.5.1 Light-Induced Absorption and Nonlinear Photovoltaic Effects 462.5.2 Deep and Shallow Centers 472.6 Light-Induced Absorption or Photochromic Effect 482.6.1 Transmittance with Light-Induced Absorption 512.7 Dember or Light-Induced Schottky Effect 512.7.1 Dember and Photovoltaic Effects 54Part II Holographic Recording 55Introduction 563 Recording a Space-Charge Electric Field 573.1 Index-of-Refraction Modulation 603.2 General Formulation 633.2.1 Rate Equations 643.2.2 Solution for Steady-State 643.3 First Spatial Harmonic Approximation 663.3.1 Steady-State Stationary Process 683.3.1.1 Diffraction Efficiency 693.3.1.2 Hologram Phase Shift 703.3.2 Time-Evolution Process: Constant Modulation 703.4 Steady-State Nonstationary Process: Running Holograms 723.4.1 Running Holograms with Hole-Electron Competition 763.4.1.1 Mathematical Model 783.5 Photovoltaic Materials 843.5.1 Uniform Illumination: N/ x = 0 843.5.2 Interference Pattern of Light 853.5.2.1 Influence of Donor Density 864 Volume Hologram with Wave Mixing 894.1 Coupled Wave Theory: Fixed Grating 894.1.1 Diffraction Efficiency 914.1.2 Out of Bragg Condition 914.2 Dynamic Coupled Wave Theory 924.2.1 Combined Phase-Amplitude Stationary Gratings 924.2.1.1 Fundamental Properties 944.2.1.2 Irradiance 954.2.2 Pure Phase Grating 964.2.2.1 Time Evolution 964.2.2.2 Stationary Hologram 1004.2.2.3 Steady-State Nonstationary Hologram with Wave-Mixing and Bulk Absorption 1064.2.2.4 Gain and Stability in Two-Wave Mixing 1104.3 Phase Modulation 1154.3.1 Phase Modulation in Dynamically Recorded Gratings 1164.3.1.1 Phase Modulation in the Signal Beam 1164.3.1.2 Output Phase Shift 1184.4 Four-Wave Mixing 1194.5 Conclusions 1205 Anisotropic Diffraction 1215.1 Coupled-Wave with Anisotropic Diffraction 1215.2 Anisotropic Diffraction and Optical Activity 1225.2.1 Diffraction Efficiency with Optical Activity, rho 1235.2.2 Output Polarization Direction 1236 Stabilized Holographic Recording 1256.1 Introduction 1256.2 Mathematical Formulation 1276.2.1 Stabilized Stationary Recording 1296.2.1.1 Stable Equilibrium Condition 1306.2.2 Stabilized Recording of Running (Nonstationary) Holograms 1306.2.2.1 Stable Equilibrium Condition 1326.2.2.2 Speed of the Fringe-Locked Running Hologram 1326.2.3 Self-Stabilized Recording with Arbitrarily Selected Phase Shift 1336.3 Self-Stabilized Recording in Actual Materials 1356.3.1 Self-Stabilized Recording in Sillenites 1366.3.2 Self-Stabilized Recording in LiNbO3 1366.3.2.1 Holographic Recording without Constraints 1376.3.2.2 Self-Stabilized Recording 142Part III Materials Characterization 151Introduction 1527 General Electrical and Optical Techniques 1557.1 Electro-Optic Coefficient 1557.2 Light-Induced Absorption 1577.3 Dark Conductivity 1617.4 Photoconductivity 1627.4.1 Photoconductivity in Bulk Material 1637.4.2 Alternating Current Technique 1647.4.3 Wavelength-Resolved Photoconductivity 1667.4.3.1 Transverse Configuration 1667.4.3.2 Longitudinal Configuration 1707.5 Photo-Electric Conversion 1737.5.1 Wavelength-Resolved Photo-Electric Conversion (WRPC) 1737.5.1.1 Undoped BTO 1747.6 Modulated Photoconductivity 1757.6.1 Quantum Efficiency and Mobility-Lifetime Product 1767.7 Photo-Electromotive-Force Techniques (PEMF) 1787.7.1 Speckle-Photo-Electromotive-Force (SPEMF) Techniques 1787.7.1.1 Speckle Pattern onto a Photorefractive Material: Stationary State 1798 Holographic Techniques 1898.1 Holographic Recording and Erasing 1898.2 Direct Holographic Techniques 1898.2.1 Energy Coupling 1908.2.2 Diffraction Efficiency 1928.2.2.1 Debye Length Dependence on Light Intensity 1938.2.3 Holographic Sensitivity 1938.2.3.1 Computing S 1958.3 Hologram Recording 1958.4 Hologram Erasure 1958.4.1 One Single Photoactive Center Involved 1968.4.1.1 Bulk Absorption 1968.4.2 Two (or More) Photoactive Centers (Localized States) Involved 1978.4.2.1 Same Charge Carriers 1978.4.2.2 Holes and Electrons on Different Photoactive Centers 1978.5 Materials 1978.5.1 Fe-doped LiNbO3: Hologram Erasure under White Light Illumination 1978.5.2 Bi12TiO20 (BTO) 1998.5.2.1 Undoped BTO under lambda = 780 nm Illumination 1998.5.2.2 Bi12TiO20:Pb (BTO:Pb) 2008.5.2.3 Bi12TiO20:V (BTO:V) 2028.5.2.4 Holographic Relaxation in the Dark: Dark Conductivity 2038.6 Phase Modulation Techniques 2058.6.1 Holographic Sensitivity 2058.6.2 Holographic Phase-Shift Measurement 2068.6.2.1 Wave-Mixing Effects 2078.6.3 Photorefractive Response Time 2078.6.4 Selective Two-Wave Mixing 2108.6.4.1 Amplitude and Phase Effects in GaAs 2128.6.5 Running Holograms 2148.7 Holographic Photo-Electromotive-Force (HPEMF) Techniques 2189 Self-Stabilized Holographic Techniques 2299.1 Holographic Phase Shift 2299.2 Fringe-Locked Running Holograms 2329.2.1 Absorbing Materials 2329.2.1.1 Low Absorption Approximation 2349.2.2 Characterization of Materials 2349.2.2.1 Measurements 2359.2.2.2 Theoretical Fitting 2369.3 Characterization of LiNbO3:Fe 239Part IV Applications 243Introduction 24410 Vibrations and Deformations 24510.1 Measurement of Vibration and Deformation 24510.2 Experimental Setup 24610.2.1 Reading of Dynamic Holograms 24710.2.2 Optimization of Illumination 24710.2.2.1 Target Illumination 24710.2.2.2 Distribution of Light among Reference and Object Beams 24710.2.3 Self-Stabilization Feedback Loop 24910.2.4 Vibrations 25110.2.5 Deformation and Tilting 25210.2.5.1 Applications of PEMF to Mechanical Vibration Measurements 25611 Fixed Holograms 25711.1 Introduction 25711.2 Fixed Holograms in LiNbO3 25711.2.1 Simultaneous Recording and Compensation 25811.2.1.1 Theory 25811.2.1.2 Experiment: Simultaneous Recording and Compensating 26012 Photoelectric Conversion 26312.1 Photoelectric Conversion Efficiency: Dember and Photovoltaic Effects 263Part V Appendix 265Introduction 266Appendix A Reversible Real-Time Holograms 267A.1 Naked-Eye Detection 267A.1.1 Diffraction 267A.1.2 Interference 268A.2 Instrumental Detection 268Appendix B Diffraction Efficiency Measurement 271B.1 Angular Bragg Selectivity 271B.1.1 In-Bragg Recording Beams 272B.1.2 Probe Beam 272B.2 Reversible Holograms 274B.3 High Index-of-Refraction Material 275Appendix C Effectively Applied Electric Field 279Appendix D Physical Meaning of Some Parameters 281D.1 Temperature 281D.1.1 Debye Screening Length 282D.1.1.1 Debye Length in Photorefractives 283D.2 Diffusion and Mobility 284Appendix E Photodiodes 287E.1 Photovoltaic Regime 288E.2 Photoconductive Regime 289E.3 Operational Amplifier 290Bibliography 291Index 305

JAIME FREJLICH, PHD, received his PhD in Physics at Pierre and Marie Curie University in Paris, France, in 1977. He then started working as an Assistant Professor at "Gleb Wataghin" Institute of Physics at State University of Campinas, Sao Paulo State, Brazil, and retired as a Full Professor in 2016. He passed away in October 2019 after preparing this book. His research interests were in photorefractive materials, their effects, processes, and applications.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia