


ISBN-13: 9781119459934 / Angielski / Twarda / 2019 / 480 str.
ISBN-13: 9781119459934 / Angielski / Twarda / 2019 / 480 str.
Preface xiPart I: General Concepts and Photoelectrochemical Systems 11 Photoelectrochemical Reaction Engineering for Solar Fuels Production 3Isaac Holmes-Gentle, Faye Alhersh, Franky Bedoya and Klaus Hellgardt1.1 Introduction 31.1.1 Undeveloped Power of Renewables 41.1.2 Comparison Solar Hydrogen from Different Sources 51.1.3 Economic Targets for Hydrogen Production and PEC Systems 61.1.4 Goals of Using Hydrogen 81.2 Theory and Classification of PEC Systems 91.2.1 Classification Framework for PEC Cell Conceptual Design 101.2.2 Classification Framework for Design of PEC Devices 131.2.3 Integrated Device vs PV + Electrolysis 191.3 Scaling Up of PEC Reactors 191.4 Reactor Designs 201.5 Systems-Level Design 281.6 Outlook 301.6.1 Future Reactor Designs 301.6.1.1 Perforated Designs 301.6.1.2 Membrane-less and Microfluidic Designs 311.6.1.3 Redox-Mediated Systems 311.6.2 Avenues for Future Research 331.6.2.1 Intensification and Waste Heat Utilization 331.6.2.2 Usefulness of Oxidation and Coupled Process with Hydrogen Generation 331.7 Summary and Conclusions 34References 352 The Measurements and Efficiency Definition Protocols in Photoelectrochemical Solar Hydrogen Generation 43Jingwei Huang and Qizhao Wang2.1 Introduction 432.2 PEC Measurement 442.2.1 Measurements of Optical Properties 442.2.2 Polarization Curve Measurements 452.2.3 Photocurrent Transients Measurements 462.2.4 IPCE and APCE Measurements 472.2.5 Mott-Schottky Measurements 482.2.6 Measurement (Calculation) of Charge Separation Efficiency 502.2.7 Measurements of Charge Injection Efficiency 512.8 Gas Evolution Measurements 522.3 The Efficiency Definition Protocols in PEC Water Splitting 532.3.1 Solar-to-Hydrogen Conversion Efficiency 532.3.2 Applied Bias Photon-to-Current Efficiency 542.3.3 IPCE and APCE 552.4 Summary 56References 563 Photoelectrochemical Cell: A Versatile Device for Sustainable Hydrogen Production 59Mohit Prasad, Vidhika Sharma, Avinash Rokade and Sandesh Jadkar3.1 Introduction 603.2 Photoelctrochemical (PEC) Cells 613.2.1 Solar-to-Hydrogen (STH) Conversion Efficiency 653.2.2 Applied Bias Photon-to-Current Efficiency (ABPE) 653.2.3 External Quantum Efficiency (EQE) or Incident Photon-to-Current Efficiency (IPCE) 653.2.4 Internal Quantum Efficiency (IQE) or Absorbed Photon-to-Current Efficiency (APCE) 663.3 Monometal Oxide Systems for PEC H2 Generation 663.3.1 Titanium Dioxide (TiO2) 673.3.2 Zinc Oxide (ZnO) 683.3.3 Tungsten Oxide (WO3) 703.3.4 Iron Oxide (Fe2O3) 753.3.5 Bismuth Vandate (BiVO4) 763.4 Complex Nanostructures for PEC Splitting of Water 773.4.1 Plasmonic Metal Semiconductor Composite Photoelectrodes 773.4.2 Semiconductor Heterojunctions 803.4.3 Quantum Dots Sensitized Semiconductor Photoelectrodes 823.4.4 Synergistic Effect in Semiconductor Photoelectrodes 833.4.5 Biosensitized Semiconductor Photoelectrodes 853.4.6 Tandem Stand-alone PEC Water-Splitting Device 923.5 Conclusion and Outlook 98Acknowledgments 101References 1014 Hydrogen Generation from Photoelectrochemical Water Splitting 121Yanqi Xu, Qian Zhao, Cui Du, Chen Zhou, Huaiguo Xue and Shengyang Yang4.1 Introduction 1224.2 Principle of Photoelectrochemical (PEC) Hydrogen Generation 1224.3 Photoeletrode Materials 1254.3.1 Photoanode Materials 1254.3.1.1 TiO2-Based Photoelectrode 1254.3.1.2 BiVO4-Based Photoelectrode 1264.3.1.3 alpha-Fe2O3-Based Photoelectrode 1294.3.2 Photocathode Materials 1294.3.2.1 Copper-Based Chalcogenides-Based Photoelectrode 1294.3.2.2 Silicon-Based Photoelectrode 1304.3.2.3 Cu2O-Based Photoelectrode 1314.3.2.4 III-V Group Materials 1324.3.2.5 CdS-Based Photoelectrode 1344.4 Advances in Photoelectrochemical (PEC) Hydrogen Generation 1354.4.1 Monocomponent Catalyst 1354.4.2 Functional Cocatalyst 1374.4.3 Z-scheme Catalyst 1394.5 Pros and cons of photoelectrodes and photocatalysts 1424.6 Conclusion and Outlook 144Acknowledgments 145References 145Part II: Photoactive Materials for Solar Hydrogen Generation 1595 Hematite Materials for Solar-Driven Photoelectrochemical Cells 161Tianyu Liu, Martina Morelli and Yat Li5.1 Introduction 1615.2 Physical Properties of Hematite 1635.2.1 Crystal Structure 1635.2.2 Optical Properties 1645.2.3 Electronic Properties 1655.2.4 Band Structure 1665.2.5 Overview of Hematite Bottlenecks and Corresponding Strategies 1675.2.5.1 Addressing Poor Light Absorption Efficiency 1685.2.5.2 Addressing Fast Charge Carrier Recombination 1695.2.5.3 Addressing Sluggish Water Oxidation 5.3 Kinetics 1695.3 Experimental Strategies to Enhance the Photoactivity of Hematite 1705.3.1 Nanostructuring 1705.3.1.1 Direct Synthesis 1705.3.1.3 In Situ Structural Transformation 1725.3.1.4 "Locking" Nanostructures 1735.3.2 Doping 1755.3.2.1 Oxygen Vacancies 1755.3.2.2 Foreign Ion Doping 1775.3.3 Construction of Heterojunctions 1805.3.3.1 Semiconducting Overlayers 1805.3.3.2 Sensitization and Tandem Cells 1815.3.3.3 OER Catalysts 1825.3.3.4 Engineering of Current Collectors 1845.4 Fundamental Characteristics of the PEC Behaviors of Hematite 1855.4.1 Transient Absorption Spectroscopy 1855.4.2 Effects of Morphology 1965.4.3 Effect of Doping 1985.4.3.1 Oxygen (O) Vacancies 1985.4.3.2 n-type Dopants 1995.4.3.3 p-type Dopants 2015.4.3.4 Isovalent Dopants 2015.4.3.5 Multiple Dopants 2015.4.4 Effect of Water Oxidation Catalysts 2025.4.4.1 Mechanism of Uncatalyzed Water Oxidation 2025.4.4.2 Mechanism of Catalyzed Water Oxidation 2035.4.5 Effect of Heterojunctions 2045.4.5.1 Facilitating Charge Separation and Transfer 2045.4.5.2 Surface Passivation 2065.4.5.3 Back-contact Engineering 2075.5 Summary 208References 2096 Design of Bismuth Vanadate-Based Materials: New Advanced Photoanodes for Solar Hydrogen Generation 219Olivier Monfort, Panagiotis Lianos and Gustav Plesch6.1 Introduction 2206.2 Photoanodes in Photoelectrochemical Processes 2206.3 Bismuth Vanadate (BiVO4) 2246.3.1 Structure and Properties of BiVO4 2256.3.2 Synthesis of BiVO4 2266.3.3 Applications of BiVO4 Materials 2276.4 BiVO4 as Photoanode for Solar Hydrogen Generation 2286.4.1 Optimization of the Photoanode 2286.4.1.1 Photoanode Preparation 2286.4.1.2 Choice of the Electrolyte 2316.4.2 Solar Hydrogen Generation by Water Splitting 2336.5 Modified BiVO4 Photoanodes 2366.5.1 Transition Metal-Modified BiVO4 2376.5.1.1 Generalities 2376.5.1.2 Nb-modified BiVO4 2386.5.2 BiVO4 Composites 2406.5.2.1 Generalities 2406.5.2.2 BiVO4/TiO2 Composite 2426.6 Conclusion 2456.7 Acknowledgments 246References 2467 Copper-Based Chalcopyrite and Kesterite Materials for Solar Hydrogen Generation 251Cigdem Tuc Altaf, Nazrin Abdullayeva and Nurdan Demirci Sankir7.1 Introduction 2527.2 Chalcopyrite I-III-VI2 Semiconductors 2537.2.1 Material Properties 2537.2.2 Synthesis Techniques of Chalcopyrite CuInS/Se2 Nanocrystals 2557.2.2.1 Hot-Injection Method 2587.2.2.2 Heat-Up (Noninjection) Method 2587.2.2.3 Thermal Decomposition Method 2587.2.2.4 Solvothermal Method 2597.2.2.5 Microwave Treatment Method 2607.2.3 Chalcopyrite CuInS/Se2 Thin-Film Fabrication Methods 2607.2.3.1 Vacuum-Based Techniques 2627.2.3.2 Nonvacuum Techniques 2637.2.4 Applications in Photoelectrochemical Cells 2667.3 Cu-Based Kesterite (I2-II-IV-VI4) Semiconductors 2697.3.1 Material Properties 2697.3.2 Synthesis Techniques of Kesterite Cu2ZnSnS/Se4 Nanocrystals 2727.3.2.1 Hot-Injection Method 2727.3.2.2 Solvothermal/Hydrothermal Method 2747.3.2.3 Microwave-Assisted Chemical Synthesis 2757.3.2.4 Additional Novel Approaches to CZTS Nanocrystal Syntheses 2757.3.3 Kesterite Cu2ZnSnS4 Thin-Film Fabrication Methods 2777.3.3.1 Vacuum-based Techniques 2777.3.3.2 Nonvacuum Techniques 2807.3.4 Applications in Photoelectrochemical Cells 2847.4 Concluding Remarks 284References 2878 Eutectic Composites for Photoelectrochemical Solar Cells (PSCs) 297J. Sar, K. Kolodziejak, K. Wysmulek, K. Orlinski, A. Kusior, M. Radecka, A. Trenczek-Zajac, K. Zakrzewska and D.A. Pawlak8.1 Introduction 2978.2 The Photoelectrolysis of Water as a Source of Hydrogen 2988.3 Experimental Methods for Studying Photoactive Materials Such as Electrochemical (Mott-Schottky Plots) and Photoelectrochemical Determination of the Flat-Band Potential, Impedance Spectroscopy, and Bandgap by Optical Spectroscopy 3028.4 Eutectic Composites 3188.5 Methods of Obtaining Eutectic Composites 3228.6 Eutectic Composites used for Photoelectrochemical Water Splitting 3248.7 Other Potential Eutectic Composites 3288.8 Modification of the Properties of Eutectic Composites 3298.9 Conclusions 331References 332Part III: Photoelectrochemical Related Systems 3419 Implementation of Multijunction Solar Cells in Integrated Devices for the Generation of Solar Fuels 343V. Smirnov, K. Welter, F. Finger, F. Urbain, J.R. Morante, B. Kaiser and W. Jaegermann9.1 Introduction 3449.2 Multijunction Solar Cells as Photoelectrodes 3499.3 PV-EC Devices Based on Multijunction Solar Cells 3559.4 Promising Device Designs, Future Prospects 3629.5 Summary and Conclusions 367References 37010 Photoelectrochemical Cells: Dye-Sensitized Solar Cells 375Go Kawamura, Pascal Nbelayim, Wai Kian Tan and Atsunori Matsuda10.1 Introduction 37610.2 Brief History of Solar Cells to DSSCs 37710.3 Structure, Components, and Working Principle of the DSSC 37710.3.1 The Transparent Conducting Oxide (TCO) Substrate 37910.3.2 The Hole Blocking Layer (HBL) 37910.3.3 The Photoanode 37910.3.4 The Sensitizer/Dye 38310.3.5 The HTM/Electrolyte 38510.3.6 The CE 38510.3.7 Electron Kinetics in an Active DSSC 38610.4 Characterization Techniques for DSSCs 38710.4.1 Computational Modeling 38710.4.2 Morphological and Structural Studies 38710.4.2.1 Electron Microscopy 38710.4.2.2 X-Ray Diffraction 38810.4.3 Dye Adsorption. 38910.4.4 Spectroscopic Techniques 38910.4.4.1 Optical (UV-Vis) Spectroscopy 38910.4.4.2 X-ray Photoelectron Spectroscopy 39010.4.4.3 FTIR Spectroscopy 39010.4.4.4 Raman Spectroscopy 39010.4.4.5 Material Composition 39110.4.5 Electromagnetic Measurements 39110.4.5.1 Hall Effect Measurement 39110.4.5.2 Electron Paramagnetic Resonance Analysis 39110.4.6 (Photo-)Electrochemical Measurements 39110.4.6.1 Photovoltaic Properties 39210.4.6.2 Electrochemical Impedance Spectroscopy 39210.4.6.3 Electron Transport 39210.4.6.4 Electron Lifetime 39310.4.6.5 Electron Concentration 39410.4.6.6 Flat-band Potential 39410.4.6.7 Charge Collection Efficiency 39410.5 Plasmonic DSSCs 39510.6 Dye-Sensitized Solar Hydrogen Production 39810.7 Applications and Future Outlook of DSSC 40310.8 Academic 404References 40511 Photocatalytic Formation of Composite Electrodes for Semiconductor-Sensitized Solar Cells 415Oleksandr Stroyuk, Andriy Kozytskiy and Stepan Kuchmiy11.1 Introduction 41611.2 Photocatalytic Deposition of Metal Sulfide Nanoparticles on the Surface of Wide-Bandgap Semiconductors 41711.2.1 Photodeposition of Cadmium Sulfide NPs 42011.2.2 Photocatalytic Deposition of Lead Sulfide 43011.2.3 Photocatalytic Deposition of Silver Sulfide 43111.2.4 Photodeposition of Antimony Sulfide 43111.2.5 Photocatalytic Deposition of Molybdenum and Tungsten Sulfides 43311.2.6 Photocatalytic Deposition of Copper Sulfide 43411.3 Photocatalytic Deposition of Metal Selenides 43511.4 Conclusion and Outlook 442References 443Index 449
Nurdan Demirci Sankir is currently an Associate Professor in the Materials Science and Nanotechnology Engineering Department at the TOBB University of Economics and Technology (TOBB ETU), Ankara, Turkey. She received her M.Eng and PhD degrees in Materials Science and Engineering from the Virginia Polytechnic and State University, USA in 2005. Nurdan has actively carried out research and consulting activities in the areas of photovoltaic devices, solution based thin film manufacturing, solar driven water splitting, photocatalytic degradation and nanostructured semiconductors.Mehmet Sankir received his PhD in Macromolecular Science and Engineering from the Virginia Polytechnic and State University, USA in 2005. Dr. Sankir is currently an Associate Professor in the Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey and group leader of Advanced Membrane Technologies Laboratory. Dr. Sankir has actively carried out research and consulting activities in the areas of membranes for fuel cells, flow batteries, hydrogen generation and desalination.
1997-2025 DolnySlask.com Agencja Internetowa





