ISBN-13: 9781119647768 / Angielski / Twarda / 2020 / 336 str.
ISBN-13: 9781119647768 / Angielski / Twarda / 2020 / 336 str.
About the Book xvPreface xviiAcknowledgments xixGeneral Literature xxiNomenclature xxvAbbreviations and Acronyms xxvii1 Chemical Technology 11.1 Introduction 21.2 Chemical Engineering 51.2.1 Conservation of Mass 71.2.2 Conservation of Energy 71.2.3 Conservation of Momentum 81.2.4 Thermodynamics of Chemical Reactions 81.2.5 Chemical Kinetics 111.2.5.1 Reaction Rate: Activation Energy 111.2.6 Reactors 121.2.6.1 Conversion, Selectivity, and Yields 121.2.6.2 Continuous Tubular Reactor 131.2.6.3 The Reaction Order 151.2.6.4 Rate Constant 151.2.7 Industrial Catalysts 161.2.7.1 The Place of Catalytic Processes in Hydrocarbon Technology 161.2.7.2 Homogeneous Catalysts 161.2.7.3 Heterogeneous Catalysts 181.2.7.4 Classifying Catalysts 191.2.8 Conversion of Hydrocarbons: Active Intermediate Forms 211.2.8.1 Carbocations 211.2.8.2 Radicals 231.2.8.3 Initiated Decomposition 261.3 Potential Steps Toward Greener Chemical Technology 281.3.1 Maturity 291.3.2 Participation in International Trade 291.3.3 Competition from Developing Countries 301.3.4 Capital Intensity and Economies of Scale 311.3.5 Criticality and Pervasiveness 321.3.6 Freedom of Market Entry 331.3.7 Stringent Requirements of the Clean Air Act (CAA) 341.3.8 High R&D for Ecologically Oriented Projects 341.3.9 Dislocations and Environmental Impacts 381.3.10 Feedstock Recycling 401.4 The Top Chemical Companies 411.5 The Top Chemicals 43Further Reading 452 Current Trends in Green Hydrocarbon Technology 472.1 Introduction 472.2 Eco-Friendly Catalysts 482.3 Hydrogen 502.4 Alternative Feedstocks 512.5 Alternative Technologies 532.6 Feedstock Recycling 542.7 Functionalization of Hydrocarbons 552.7.1 Partial Oxidation of Methane 552.8 Biorefining 56Further Reading 563 Clean Energy Technology 593.1 Rational Use of Energy 593.2 The Problem of Energy in Chemical Technology 623.2.1 The Basics of Energy Management to Improve Economic Budgeting 633.2.2 Types of Energy and Energy Sources for Chemical Technology 633.3 Waste Fuel Utilization 653.3.1 Electricity 653.3.2 Energy Efficiency Improvements 653.3.3 Energy and the Environment 663.3.3.1 Carbon and Greenhouse Emissions 663.3.3.2 Formation of Particulate Matter 673.3.3.3 CO2 Emissions 683.4 Energy Technology 703.4.1 Thermodynamics 703.4.2 Power Recovery in Other Systems 713.4.3 Heat Recovery, Energy Balances, and Heat-Exchange Networks 713.4.4 Waste-Heat Boilers 723.4.5 Product-to-Feed Heat Interchange 733.4.6 Combustion Air Preheat 733.4.7 Heat Pumps 743.5 Energy Accounting 75Further Reading 774 Sources of Hydrocarbons 794.1 Introduction 804.2 Natural Gas 814.2.1 Definitions and Terminology 824.2.2 Origin 834.2.3 Occurrence 844.2.4 Reserves 844.2.5 Recovery 844.2.6 Storage 854.3 Petroleum or Crude Oil 854.4 Coal and Its Liquefaction 884.5 Shale Gas and Tight Oil: Unconventional Fossil Fuels 894.5.1 Introduction 904.5.2 Glossary and Terminology 914.5.3 Energy in 2018 934.5.4 Energy Outlook 2035 944.6 Shale Gas 964.6.1 Geology 984.6.2 Formation of Natural Gas Reservoirs 994.6.2.1 General 994.6.2.2 Unconventional Reservoir 994.6.2.3 Low-Permeability Gas Reservoirs 1014.6.2.4 Fractured Shales 1024.7 Tight Oil 1024.7.1 Types of Tight Oil Plays 1034.7.1.1 Geo-Stratigraphic Play 1044.7.1.2 Shale Oil Play 1044.7.2 Technologies Used to Recover Tight Oil 1044.7.2.1 Horizontal Drilling 1054.7.2.2 Hydraulic Fracturing 1054.7.2.3 Microseismic Events 1064.7.3 Initial Production 1064.7.3.1 Infill Drilling 1064.7.3.2 Wellbore Construction and Groundwater Protection 1074.7.3.3 Minimizing Footprint 1074.7.4 Environmental Impacts of Natural Gas 1074.7.4.1 Water and Air Quality, Methane, and Other Important Greenhouse Gases 1084.7.4.2 Earthquakes 1084.7.5 Conclusion 1084.8 Heavy Oils, Shale, and Tar Sand 109Further Reading 1105 Links with Natural Gas, Crude Oil, and Petroleum Refineries 1135.1 Links with Natural Gas 1135.1.1 Introduction 1135.1.2 Processing 1145.1.3 Water Removal 1145.1.4 Acid Gas Removal: Environmentally Friendly Solvents 1155.1.5 Fractionation 1155.1.6 Turboexpander Process 1165.1.7 Solvent Recovery 1165.1.8 Chemicals From Natural Gas 1175.2 LPG as an Ethylene Feedstock 1175.3 Heavy Condensates 1175.4 Links with Crude Oil 1185.4.1 Naphtha 1195.4.2 Middle Distillates 1225.4.3 Heavy Condensates Recovery 1235.5 Links with Petroleum Refineries 1245.5.1 Fluid Catalytic Cracking 1245.5.2 Catalytic Reforming 1285.5.2.1 Maximum Aromatic Production 1315.5.2.2 Aromatics Complex 1316 Hydrocarbon Technology, Trends, and Outlook in Petrochemistry 1336.1 Definition 1336.2 Petrochemistry and Its Products 140Further Reading 1427 Pillar A of Petrochemistry 143Production of Lower Alkenes7.1 Steam Cracking (Pyrolysis) 1437.1.1 Reaction in Steam Cracking 1457.1.2 Thermodynamics 1457.1.3 Mechanism 1457.1.4 Kinetics 1457.2 Industrial Process 1457.2.1 Composition of Feedstock 1467.2.2 Pyrolysis Temperature and Residence Time 1467.2.3 Partial Pressure of Hydrocarbon and Steam-to-Naphtha Ratio 1477.2.4 Severity and Selectivity 1477.2.5 Furnace Run Length 1487.3 Ethylene Furnace Design 1487.3.1 Heat Exchanger 1497.4 Coke Formation During Pyrolysis and Decoking Measures 1507.4.1 Catalytic Gasification of Coke During Production 1507.4.2 Sulfur Addition to Ethane Feedstocks 1537.5 Product Processing 1537.5.1 Hot Section 1557.5.2 Quench Section 1557.6 Typical Naphtha Cracker Plant 1557.6.1 Hot Section 1557.6.2 Cold Section 1567.7 Gas-Feed Cracker Process Design 1567.8 Trends in Technological Development of Steam Crackers for Production of Ethylene 1597.8.1 Direct Involvement in Petrochemical Production 1617.8.2 Integrating SC Operations 162Further Reading 1648 Pillar A of Petrochemistry 165Other Sources of Lower Alkenes8.1 Catalytic Dehydrogenation of Light Alkanes 1658.2 Methanol to Alkenes 1698.2.1 MTO Catalyst 1698.3 Metathesis 1718.3.1 Process Chemistry 1718.4 Oxidative Coupling of Methane 1728.5 Current and Future Developments 174Further Reading 1759 Pillar A of Petrochemistry 177Petrochemicals from C2 - C3 Alkenes9.1 Introduction 1779.2 Chemicals from Ethylene 1789.3 Chemicals from Propylene 1789.4 Polymerization 17910 Pillar B of Petrochemistry 181Production of BTX Aromatics10.1 Introduction 18110.2 Alkylation 18310.2.1 Ethylbenzene 18310.2.1.1 Process Chemistry 18310.2.1.2 New Eco-Friendly Catalyst 18410.2.1.3 Environmental Protection of the Described Process 18510.2.1.4 CDTECH EB Process 18510.2.1.5 EBMAX Process 18710.2.2 Cumene 18810.2.2.1 Process Chemistry 18810.2.2.2 Environmental Protection of the Process Description 189Further Reading 19011 Pillar B of Petrochemistry 191Chemicals from BTX Aromatics11.1 Chemicals from Aromatic Hydrocarbons 19111.2 Styrene 19211.2.1 Process Chemistry 19311.2.2 Process Descriptions 19311.3 Hydrogenation 19411.3.1 Partial Hydrogenation of Benzene to Cyclohexene 19511.4 Hydrodealkylation of Toluene 19611.5 Isomerization 19711.6 Disproportionation of Toluene 19811.7 Oxidation Processes 19911.7.1 Cumene --> Phenol + Acetone 19911.7.2 Process Chemistry 20011.7.2.1 Cumene Oxidation to Cumene Hydroperoxide 20011.7.2.2 Cumene Hydroperoxide Cleavage to Phenol and Acetone 20011.7.2.3 Distillation Section 20011.7.3 Process Description 20111.7.4 Benzene --> Maleic Anhydride 20211.7.5 Cyclohexane --> Cyclohexanol + Cyclohexanone --> Adipic Acid 20211.7.6 P-Xylene --> Terephthalic Acid / Dimethyl Terephthalate 20311.8 Condensation Processes 20411.8.1 Aniline 20411.8.2 4,4'-Diphenylmethane Diisocyanate 20411.8.3 Toluene --> Dinitrotoluene and Toluene Diisocyanate 20511.8.4 Bisphenol A 20611.8.4.1 Bisphenol Reaction 20811.8.4.2 Process Description 20812 Pillar C of Petrochemistry 209C1 Technologies12.1 Introduction 21012.2 Synthesis Gas 21112.2.1 Steam Reforming of Methane - Stringent Greenhouse Gas 21212.2.1.1 Reactions and Thermodynamics 21312.2.2 Steam Reforming Process 21412.2.3 Hydrogen 21512.2.4 MegaMethanol Technology 21512.2.4.1 Process Description 21612.2.5 Autothermal Reforming 21812.2.6 Combined Reforming 21912.2.7 Methanol Synthesis 22012.2.7.1 Methanol Synthesis Loop 22212.2.7.2 Methanol Distillation 22212.2.8 MTBE 22312.2.8.1 Environmentally Friendly Process of Catalytic Distillation 22412.2.9 Etherification of Glycerol by Isobutylene 22512.2.10 Fisher-Tropsch Synthesis 22812.2.11 Acetic Acid 22912.2.11.1 Background Information 22912.2.11.2 Principal Reaction 23012.2.11.3 Catalyst Preparation Reactions 23012.2.11.4 Process Description 23112.2.12 Hydroformylation 23112.2.12.1 Thermodynamics 23212.2.12.2 Catalyst Development 23312.2.12.3 Catalytic Cycle 23312.2.12.4 Kinetics 23412.2.12.5 Process Flowsheet 23412.2.12.6 Comparison of the Hydroformylation Process 235Further Reading 23613 Hydrogen Technologies 23713.1 Introduction 23713.2 Hydrogen as an Alternative Fuel 23913.2.1 Production of Hydrogen 24013.2.1.1 Dry Reforming, Methane, and CO2 Chemical Transformation 24113.3 Vehicle On-Board Fuel Reforming 24313.3.1 Steam Reforming of Naphtha (Gasoline) 24513.3.2 On-Board Diesel Fuel Processing 24613.3.3 Direct and Gradual Internal Reforming of Methane 24813.3.4 Methanol-to-Hydrogen Production 24913.3.5 Steam Reforming of Ethanol 25213.4 Vehicular Hydrogen Storage Approaches 25413.4.1 Reversible On-Board Approaches 25513.4.1.1 Compressed Hydrogen Gas 25513.4.1.2 Liquid Hydrogen Tanks 25613.4.1.3 Metal Hydrides 25613.4.1.4 High-Surface-Area Sorbents and Carbon-Based Materials 25613.4.2 Chemical Hydrogen Storage: Regenerable Off-Board 25713.4.2.1 Hydrolysis Reactions 25713.4.2.2 Hydrogenation/Dehydrogenation Reactions 25713.4.2.3 Ammonia Borane and Other Boron Hydrides 25813.4.2.4 Ammonia 25813.4.2.5 Alane 25813.5 Gas Conversion Technologies/Natural Gas Upgrading 25813.5.1 GTL Conversion of Syngas to Fuel 259Further Reading 25914 Biorefineries 26314.1 Introduction 26314.2 Petrochemistry 26414.3 Carbonization of Coal 26414.4 Manufacturing of Activated Carbon 26514.5 Chemicals and Fuels from Biomass 26614.5.1 Degasification 26614.5.2 Oxygenation 26814.5.3 Levoglucosan 270Further Reading 27215 Recycling Technologies 27315.1 Feedstock Recycling of Plastic Wastes 27315.2 Fuels and Chemicals from Polymer Waste 27515.3 Fuels and Chemicals from Used Tires 277Further Reading 28116 Microchannel Technologies and Nanotechnology 28316.1 Introduction 28316.2 Fluid Flow in Microchannels 28516.3 Intensified Superheated Processing 28616.3.1 Oxidative Dehydrogenation of Hydrocarbons 28716.3.2 Steam Reforming of Ethanol 28716.3.3 Fischer-Tropsch Synthesis and GTL 28816.4 Steam Cracking of Hydrocarbons 28916.5 Nanotechnology 29216.5.1 Definition 29216.5.2 Fundamental Concepts 29416.5.3 Nanomaterials 29516.5.4 Applications 295Further Reading 296Index 297
MARTIN BAJUS, Professor of Chemical Technology at Slovak University of Technology, Institute of Organic Chemistry, Catalysis and Petrochemistry, Bratislava, Slovak Republic. Prof. Bajus is a leading expert in refinery, petrochemical, energy and recycling technologies, and founder of the Bratislava School of Pyrolysis at the Slovak University of Technology.
1997-2024 DolnySlask.com Agencja Internetowa