ISBN-13: 9780470823972 / Angielski / Twarda / 2010 / 704 str.
ISBN-13: 9780470823972 / Angielski / Twarda / 2010 / 704 str.
While solar (photovoltaic) electricy is a multi-billion dollar industry, solar hydrogen - the direct generation of hydrogen by solar irradiation - is in its infancy. This book offers the latest knowledge to scientists, engineers, and entrepreneurs involved in photoelectrochemical systems and nanotechnology for the generation of hydrogen.
"I find that this work contains solid in–depth science, and goes far beyond "trendy" issues. I can recommend this collection to interested readers." (
Angewandte Chemie, 2010)
List of Contributors.
Preface.
Editor Biography.
PART ONE–FUNDAMENTALS, MODELING, AND EXPERIMENTAL INVESTIGATION OF PHOTOCATALYTIC REACTIONS FOR DIRECT SOLAR HYDROGEN GENERATION.
1 Solar Hydrogen Production by Photoelectrochemical Water Splitting: The Promise and Challenge (Eric L. Miller).
1.1 Introduction.
1.2 Hydrogen or Hype?
1.3 Solar Pathways to Hydrogen.
1.4 Photoelectrochemical Water–Splitting.
1.5 The Semiconductor/Electrolyte Interface.
1.6 Photoelectrode Implementations.
1.7 The PEC Challenge.
1.8 Facing the Challenge: Current PEC Materials Research.
Acknowledgments.
References.
2 Modeling and Simulation of Photocatalytic Reactions at TiO2 Surfaces (Hideyuki Kamisaka and Koichi Yamashita).
2.1 Importance of Theoretical Studies on TiO2 Systems.
2.2 Doped TiO2 Systems: Carbon and Niobium Doping.
2.3 Surface Hydroxyl Groups and the Photoinduced Hydrophilicity of TiO2.
Conversion.
2.4 Dye–Sensitized Solar Cells.
2.5 Future Directions: Ab Initio Simulations and the Local Excited States on TiO2.
Acknowledgments.
References.
3 Photocatalytic Reactions on Model Single Crystal TiO2 Surfaces (G.I.N. Waterhouse and H. Idriss).
3.1 TiO2 Single–Crystal Surfaces.
3.2 Photoreactions Over Semiconductor Surfaces.
3.3 Ethanol Reactions Over TiO2(110) Surface.
3.4 Photocatalysis and Structure Sensitivity.
3.5 Hydrogen Production from Ethanol Over Au/TiO2 Catalysts.
3.6 Conclusions.
References.
4 Fundamental Reactions on Rutile TiO2(110) Model Photocatalysts Studied by High–Resolution Scanning Tunneling Microscopy (Stefan Wendt, Ronnie T. Vang, and Flemming Besenbacher).
4.1 Introduction.
4.2 Geometric Structure and Defects of the Rutile TiO2 (110) Surface.
4.3 Reactions of Water with Oxygen Vacancies.
4.4 Splitting of Paired H Adatoms and Other Reactions Observed on Partly Water Covered TiO2(110).
4.5 O2 Dissociation and the Role of Ti Interstitials.
4.6 Intermediate Steps of the Reaction Between O2 and H Adatoms and the Role of Coadsorbed Water.
4.7 Bonding of Gold Nanoparticles on TiO2(110) in Different Oxidation States.
4.8 Summary and Outlook.
References.
PART TWO–ELECTRONIC STRUCTURE, ENERGETICS, AND TRANSPORT DYNAMICS OF PHOTOCATALYST NANOSTRUCTURES.
5 Electronic Structure Study of Nanostructured Transition Metal Oxides Using Soft X–Ray Spectroscopy (Jinghua Guo, Per–Anders Glans, Yi–Sheng Liu, and Chinglin Chang).
5.1 Introduction.
5.2 Soft X–Ray Spectroscopy.
5.3 Experiment Set–Up.
5.4 Results and Discussion.
Acknowledgments.
References.
6 X–ray and Electron Spectroscopy Studies of Oxide Semiconductors for Photoelectrochemical Hydrogen Production (Clemens Heske, Lothar Weinhardt, and Marcus B ar).
6.1 Introduction.
6.2 Soft X–Ray and Electron Spectroscopies.
6.3 Electronic Surface–Level Positions of WO3 Thin Films.
6.4 Soft X–Ray Spectroscopy of ZnO:Zn3N2 Thin Films.
6.5 In Situ Soft X–Ray Spectroscopy: A Brief Outlook.
6.6 Summary.
Acknowledgments.
References.
7 Applications of X–Ray Transient Absorption Spectroscopy in Photocatalysis for Hydrogen Generation (Lin X. Chen).
7.1 Introduction.
7.2 X–Ray Transient Absorption Spectroscopy (XTA).
7.3 Tracking Electronic and Nuclear Configurations in Photoexcited Metalloporphyrins.
7.4 Tracking Metal–Center Oxidation States in the MLCT State of Metal Complexes.
7.5 Tracking Transient Metal Oxidation States During Hydrogen Generation.
7.6 Prospects and Challenges in Future Studies.
Acknowledgments.
References.
8 Fourier–Transform Infrared and Raman Spectroscopy of Pure and Doped TiO2 Photocatalysts (Lars Osterlund).
8.1 Introduction.
8.2 Vibrational Spectroscopy on TiO2 Photocatalysts: Experimental Considerations.
8.3 Raman Spectroscopy of Pure and Doped TiO2 Nanoparticles.
8.4 Gas–Solid Photocatalytic Reactions Probed by FTIR Spectroscopy.
8.5 Model Gas–Solid Reactions on Pure and Doped TiO2 Nanoparticles Studied by FTIR Spectroscopy.
8.6 Summary and Concluding Remarks.
Acknowledgments.
References.
9 Interfacial Electron Transfer Reactions in CdS Quantum Dot Sensitized TiO2 Nanocrystalline Electrodes (Yasuhiro Tachibana).
9.1 Introduction.
9.2 Nanomaterials.
9.3 Transient Absorption Spectroscopy.
9.4 Controlling Interfacial Electron Transfer Reactions by Nanomaterial Design.
9.5 Application of QD–Sensitized Metal–Oxide Semiconductors to Solar Hydrogen Production.
9.6 Conclusion.
Acknowledgments.
References.
PART THREE–DEVELOPMENT OF ADVANCED NANOSTRUCTURES FOR EFFICIENT SOLAR HYDROGEN PRODUCTION FROM CLASSICAL .LARGE BANDGAP SEMICONDUCTORS.
10 Ordered Titanium Dioxide Nanotubular Arrays as Photoanodes for Hydrogen Generation (M. Misra and K.S. Raja).
10.1 Introduction.
10.2 Crystal Structure of TiO2.
References.
11 Electrodeposition of Nanostructured ZnO Films and Their Photoelectrochemical Properties (Torsten Oekermann).
11.1 Introduction.
11.2 Fundamentals of Electrochemical Deposition.
11.3 Electrodeposition of Metal Oxides and Other Compounds.
11.4 Electrodeposition of Zinc Oxide.
11.5 Electrodeposition of One– and Two–Dimensional ZnO Nanostructures.
11.6 Use of Additives in ZnO Electrodeposition.
11.7 Photoelectrochemical and Photovoltaic Properties.
11.8 Photocatalytic Properties.
11.9 Outlook.
References.
12 Nanostructured Thin–Film WO3 Photoanodes for Solar Water and Sea–Water Splitting (Bruce D. Alexander and Jan Augustynski).
12.1 Historical Context.
12.2 Macrocrystalline WO3 Films.
12.3 Limitations of Macroscopic WO3.
12.4 Nanostructured Films.
12.5 Tailoring WO3 Films Through a Modified Chimie Douce Synthetic Route.
12.6 Surface Reactions at Nanocrystalline WO3 Electrodes.
12.7 Conclusions and Outlook.
References.
13 Nanostructured a–Fe2O3 in PEC Generation of Hydrogen (Vibha R. Satsangi, Sahab Dass, and Rohit Shrivastav).
13.1 Introduction.
13.2 a–Fe2O3.
13.3 Nanostructured a–Fe2O3 Photoelectrodes.
13.5 Efficiency and Hydrogen Production.
13.6 Concluding Remarks.
Acknowledgments.
References.
PART FOUR–NEW DESIGN AND APPROACHES TO BANDGAP PROFILING AND VISIBLE–LIGHT–ACTIVE NANOSTRUCTURES.
14 Photoelectrocatalyst Discovery Using High–Throughput Methods and Combinatorial Chemistry (Alan Kleiman–Shwarsctein, Peng Zhang, Yongsheng Hu, and Eric W. McFarland).
14.1 Introduction.
14.2 The Use of High–Throughput and Combinatorial Methods for the Discovery and Optimization of Photoelectrocatalyst Material Systems.
14.3 Practical Methods of High–Throughput Synthesis of Photoelectrocatalysts.
14.4 Photocatalyst Screening and Characterization.
14.5 Specific Examples of High–Throughput Methodology Applied to Photoelectrocatalysts.
14.6 Summary and Outlook.
References.
15 Multidimensional Nanostructures for Solar Water Splitting: Synthesis, Properties, and Applications (Abraham Wolcott and Jin Z. Zhang).
15.1 Motivation for Developing Metal–Oxide Nanostructures.
15.2 Colloidal Methods for 0D Metal–Oxide Nanoparticle Synthesis.
15.3 1D Metal–Oxide Nanostructures.
15.4 2D Metal–Oxide Nanostructures.
15.5 Conclusion.
Acknowledgments.
References.
16 Nanoparticle–Assembled Catalysts for Photochemical Water Splitting (Frank E. Osterloh).
16.1 Introduction.
16.2 Two–Component Catalysts.
16.3 CdSe Nanoribbons as a Quantum–Confined Water–Splitting Catalyst.
16.4 Conclusion and Outlook.
Acknowledgment.
References.
17 Quantum–Confined Visible–Light–Active Metal–Oxide Nanostructures for Direct Solar–to–Hydrogen Generation (Lionel Vayssieres).
17.1 Introduction.
17.2 Design of Advanced Semiconductor Nanostructures by Cost–Effective Technique.
17.3 Quantum Confinement Effects for Photovoltaics and Solar Hydrogen Generation.
17.4 Novel Cost–Effective Visible–Light–Active (Hetero)Nanostructures for Solar Hydrogen Generation.
17.5 Conclusion and Perspectives.
References.
18 Effects of Metal–Ion Doping, Removal and Exchange on Photocatalytic Activity of Metal Oxides and Nitrides for Overall Water Splitting (Yasunobu Inoue).
18.1 Introduction.
18.2 Experimental Procedures.
18.3 Effects of Metal Ion Doping.
18.4 Effects of Metal–Ion Removal.
18.5 Effects of Metal–Ion Exchange on Photocatalysis.
18.6 Effects of Zn Addition to Indate and Stannate.
18.7 Conclusions.
Acknowledgments.
References.
19 Supramolecular Complexes as Photoinitiated Electron Collectors: Applications in Solar Hydrogen Production (Shamindri M. Arachchige and Karen J. Brewer).
19.1 Introduction.
19.2 Supramolecular Complexes for Photoinitiated Electron Collection.
19.3 Conclusions.
List of Abbreviations.
Acknowledgments.
References.
PART FIVE–NEW DEVICES FOR SOLAR THERMAL HYDROGEN GENERATION.
20 Novel Monolithic Reactors for Solar Thermochemical Water Splitting (Athanasios G. Konstandopoulos and Souzana Lorentzou).
20.1 Introduction.
20.2 Solar Hydrogen Production.
20.3 HYDROSOL Reactor.
20.4 HYDROSOL Process.
20.5 Conclusions.
Acknowledgments.
References.
21 Solar Thermal and Efficient Solar Thermal/Electrochemical Photo Hydrogen Generation (Stuart Licht).
21.1 Comparison of Solar Hydrogen Processes.
21.2 STEP (Solar Thermal Electrochemical Photo) Generation of H2.
21.3 STEP Theory.
21.4 STEP Experiment: Efficient Solar Water Splitting.
21.5 NonHybrid Solar Thermal Processes.
21.6 Conclusions.References.
Index
More energy from the sun strikes Earth in an hour than is consumed by humans in an entire year. Efficiently harnessing solar power for sustainable generation of hydrogen requires low–cost, purpose–built, functional materials combined with inexpensive large–scale manufacturing methods. These issues are comprehensively addressed in On Solar Hydrogen & Nanotechnology an authoritative, interdisciplinary source of fundamental and applied knowledge in all areas related to solar hydrogen. Written by leading experts, the book emphasizes state–of–the–art materials and characterization techniques as well as the impact of nanotechnology on this cutting edge field.
On Solar Hydrogen & Nanotechnology is an essential reference for materials scientists, physical and inorganic chemists, electrochemists, physicists, and engineers carrying out research on solar energy, photocatalysis, or semiconducting nanomaterials, both in academia and industry. It is also an invaluable resource for graduate students and postdoctoral researchers as well as business professionals and consultants with an interest in renewable energy.
1997-2024 DolnySlask.com Agencja Internetowa