Dedication.- Chaptek I: Principles: Temperatures, Structures, Motions.- General Aspects of Nuclear Magnetic Resonance in Solids.- The contrast with high resolution NMR.- The flavor of the problems studied.- The special solid state aspects of the coupling of a nucleus to its surroundings — Line position and shape.- to Spin Temperatures and Their Relation to the Bloch Equations.- A prediction from the Bloch equations.- The concept of spin temperature in the laboratory frame in the absence of alternating magnetic fields.- Adiabatic and sudden changes.- Magnetic resonance and saturation.- Redfield theory neglecting lattice coupling.- The approach to equilibrium for weak H1.- Conditions for validity of the Redfield hypothesis.- Spin-lattice effects.- Spin-locking, T1p, and slow motion.- Single Crystals, Powders, and Anisotropy Effects.- A single crystal example.- The spectra of powder samples.- NMR Parameters for Studying Structure and Motion.- Dipolar interactions.- Quadrupole effects.- Anisotropic chemical shift effects.- The Eyvect of Molecular Motion on Line Widths and Relaxation Times.- Summary.- The example.- Internuclear interactions.- Motionally adapted dipolar Hamiltonian.- A second type of motion.- Collective interaction constants.- Effect of motion on spin diffusion.- A Comparison between Classical Theory of Motional Narrowing and Narrowing Due to Quantum Mechanical Tunnelling Motion.- Summary.- The relationship between classical and quantum motion.- Motional narrowing.- Classical model.- Tunnelling model.- Practical examples of tunnelling motions in molecular solids.- Spin species and the role of the exclusion principle.- Measurement of tunnelling frequency by NMR.- Appendix A.- Appendix B.- Appendix C.- Chaptett II: Systems: Phonons, Non-Metals, Metals.- Magnetic Resonance and Relaxation: A Probe of the Phonon Spectrum.- Magnetic Resonance and Structural Phase Transitions.- Order parameter determination by magnetic resonance.- Order parameter dynamics via T1.- NMR Studies of Molecular Solids, Polymers and Glasses.- Molecular solids.- Polymers.- Glasses.- NMR in Metals and Alloys.- Theory of the Knight shift and spin lattice relaxation in metals.- Knight shift and T1 in pure metals: Experimental results.- Spin-spin interactions and NMR lineshapes in metals.- NMR in dilute alloys.- Concentrated alloys.- Summary.- Chaptek III: Methods: Fourier Transform, Multiple Pulse, Double Resonance.- The Fourier Transform in NMR: I. Why and How.- Definitions.- Time domain — Frequency domain.- Pulsed Fourier transform or continuous wave.- Discrete Fourier transform (DFT).- Windowing and resolution.- Sampling rate and folding.- Calculation of the discrete Fourier transform.- The Fourier Transform in NMR: II. Signal Processing and Instrumental Requirements.- Filters and detectors.- Analog-to-digital conversion. Time averaging.- Optimization of the stored signal.- Phase corrections on the spectrum.- Line Narrowing by Multiple Pulse Techniques: I. Objectives and Principles.- Line Narrowing by Multiple Pulse Techniques: II. the Real World of Pulses.- Phase transients.- Finite pulse widths, flip angle errors.- Line Narrowing by Multiple Pulse Techniques: III. Experimental Aspects.- Problems + References about Line Narrowing by Multiple Pulse Techniques.- High Resolution Double Resonance Direct Detection of Rare Nuclei in Solids. Method and Technique.- Principles.- Description of the method.- A variation of the basic method. The single contact total transfer of polarization.- Instrumental requirements.- High Resolution Double Resonance in Solids. Recent Developments and Applications.- Some introductory remarks.- I spin preparation recipes.- Cross polarization dynamics.- Echoes.- Resolution — Applications.- Wide Line Double Resonance and Relaxation in the Rotating and Laboratory Frames.- Double resonance spectroscopy.- Double resonance relaxation measurements.- Nuclear Magnetic Double Resonance Based on Strong RF Magnetic Field Induced Coupling between Spin Systems.- The origin of the RF magnetic field induced coupling between spin systems.- Theory of the RF magnetic field induced coupling between spin systems.- Experimental.- Analysis of the double resonance process.- Experimental results.- Discussion.- IV: Life: Peptides, Proteins, Nucleic Acids.- NMR Studies of Structure and Conformation in Peptides and Proteins.- Structure and conformation in peptides and proteins.- Primary structure and NMR parameters.- Manifestations of different molecular conformations in the NMR parameters.- Dynamics of protein conformations.- NMR Studies of Hemoproteins.- Structure and biological roles of hemoproteins.- 1H-NMR spectra of hemoproteins.- Local magnetic fields in hemoproteins.- Protein conformations in single crystals and in solution.- NMR studies of the electronic states in the heure groups.- High Resolution NMR Investigation of Nucleic Acid Structures.- The assignment problem.- Detailed interpretation of the low field NMR spectra of tRNA.- Temperature dependence of low field NMR.- Paramagnetic rare earth probes of tRNA structure.- Conformation of DNA: poly d(A-T).- Determination of DNA structural parameters.- Future NMR studies.- Paraffinic Chains: The Observation of Static Dipolar Interactions in the Presence of Anisotropic Motional Narrowing.- Demonstration of a static dipolar interaction.- Investigation of molecular motions.- Participants.