• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Nonlinear Differential Equations and Dynamical Systems » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Nonlinear Differential Equations and Dynamical Systems

ISBN-13: 9783540609346 / Angielski / Miękka / 1996 / 306 str.

Ferdinand Verhulst
Nonlinear Differential Equations and Dynamical Systems Ferdinand Verhulst 9783540609346 Springer-Verlag Berlin and Heidelberg GmbH &  - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Nonlinear Differential Equations and Dynamical Systems

ISBN-13: 9783540609346 / Angielski / Miękka / 1996 / 306 str.

Ferdinand Verhulst
cena 242,07 zł
(netto: 230,54 VAT:  5%)

Najniższa cena z 30 dni: 231,29 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Mathematical Analysis
Science > Fizyka
Technology & Engineering > Engineering (General)
Wydawca:
Springer-Verlag Berlin and Heidelberg GmbH &
Seria wydawnicza:
Universitext
Język:
Angielski
ISBN-13:
9783540609346
Rok wydania:
1996
Dostępne języki:
Angielski
Wydanie:
Rev and Expande
Numer serii:
000024642
Ilość stron:
306
Waga:
1.00 kg
Wymiary:
23.523.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

1 Introduction.- 1.1 Definitions and notation.- 1.2 Existence and uniqueness.- 1.3 Gronwall’s inequality.- 2 Autonomous equations.- 2.1 Phase-space, orbits.- 2.2 Critical points and linearisation.- 2.3 Periodic solutions.- 2.4 First integrals and integral manifolds.- 2.5 Evolution of a volume element, Liouville’s theorem.- 2.6 Exercises.- 3 Critical points.- 3.1 Two-dimensional linear systems.- 3.2 Remarks on three-dimensional linear systems.- 3.3 Critical points of nonlinear equations.- 3.4 Exercises.- 4 Periodic solutions.- 4.1 Bendixson’s criterion.- 4.2 Geometric auxiliaries, preparation for the Poincaré-Bendixson theorem.- 4.3 The Poincaré-Bendixson theorem.- 4.4 Applications of the Poincaré-Bendixson theorem.- 4.5 Periodic solutions in ?n.- 4.6 Exercises.- 5 Introduction to the theory of stability.- 5.1 Simple examples.- 5.2 Stability of equilibrium solutions.- 5.3 Stability of periodic solutions.- 5.4 Linearisation.- 5.5 Exercises.- 6 Linear Equations.- 6.1 Equations with constant coefficients.- 6.2 Equations with coefficients which have a limit.- 6.3 Equations with periodic coefficients.- 6.4 Exercises.- 7 Stability by linearisation.- 7.1 Asymptotic stability of the trivial solution.- 7.2 Instability of the trivial solution.- 7.3 Stability of periodic solutions of autonomous equations.- 7.4 Exercises.- 8 Stability analysis by the direct method.- 8.1 Introduction.- 8.2 Lyapunov functions.- 8.3 Hamiltonian systems and systems with first integrals.- 8.4 Applications and examples.- 8.5 Exercises.- 9 Introduction to perturbation theory.- 9.1 Background and elementary examples.- 9.2 Basic material.- 9.3 Naïve expansion.- 9.4 The Poincaré expansion theorem.- 9.5 Exercises.- 10 The Poincaré-Lindstedt method.- 10.1 Periodic solutions of autonomous second-order equations.- 10.2 Approximation of periodic solutions on arbitrary long time-scales.- 10.3 Periodic solutions of equations with forcing terms.- 10.4 The existence of periodic solutions.- 10.5 Exercises.- 11 The method of averaging.- 11.1 Introduction.- 11.2 The Lagrange standard form.- 11.3 Averaging in the periodic case.- 11.4 Averaging in the general case.- 11.5 Adiabatic invariants.- 11.6 Averaging over one angle, resonance manifolds.- 11.7 Averaging over more than one angle, an introduction.- 11.8 Periodic solutions.- 11.9 Exercises.- 12 Relaxation Oscillations.- 12.1 Introduction.- 12.2 Mechanical systems with large friction.- 12.3 The van der Pol-equation.- 12.4 The Volterra-Lotka equations.- 12.5 Exercises.- 13 Bifurcation Theory.- 13.1 Introduction.- 13.2 Normalisation.- 13.3 Averaging and normalisation.- 13.4 Centre manifolds.- 13.5 Bifurcation of equilibrium solutions and Hopf bifurcation.- 13.6 Exercises.- 14 Chaos.- 14.1 Introduction and historical context.- 14.2 The Lorenz-equations.- 14.3 Maps associated with the Lorenz-equations.- 14.4 One-dimensional dynamics.- 14.5 One-dimensional chaos: the quadratic map.- 14.6 One-dimensional chaos: the tent map.- 14.7 Fractal sets.- 14.8 Dynamical characterisations of fractal sets.- 14.9 Lyapunov exponents.- 14.10 Ideas and references to the literature.- 15 Hamiltonian systems.- 15.1 Introduction.- 15.2 A nonlinear example with two degrees of freedom.- 15.3 Birkhoff-normalisation.- 15.4 The phenomenon of recurrence.- 15.5 Periodic solutions.- 15.6 Invariant tori and chaos.- 15.7 The KAM theorem.- 15.8 Exercises.- Appendix 1: The Morse lemma.- Appendix 2: Linear periodic equations with a small parameter.- Appendix 3: Trigonometric formulas and averages.- Appendix 4: A sketch of Cotton’s proof of the stable and unstable manifold theorem 3.3.- Appendix 5: Bifurcations of self-excited oscillations.- Appendix 6: Normal forms of Hamiltonian systems near equilibria.- Answers and hints to the exercises.- References.

Ferdinand Verhulst was born in Amsterdam, The Netherlands, in 1939.

He graduated at the University of Amsterdam in Astrophysics and Mathematics. A period of five years at the Technological University of Delft, started his interest in technological problems, resulting in various cooperations with engineers. His other interests include the methods and applications of asymptotic analysis, nonlinear oscillations and wave theory.

He holds a chair of dynamical systems at the department of mathematics at the University of Utrecht.

Among his other interests are a publishing company, Epsilon Uitgaven, that he founded in 1985, and the relation between dynamical systems and psychoanalysis.

For more information see www.math.uu.nl/people/verhulst

On the subject of differential equations many elementary books have been written. This book bridges the gap between elementary courses and research literature. The basic concepts necessary to study differential equations - critical points and equilibrium, periodic solutions, invariant sets and invariant manifolds - are discussed first. Stability theory is then developed starting with linearisation methods going back to Lyapunov and Poincaré. In the last four chapters more advanced topics like relaxation oscillations, bifurcation theory, chaos in mappings and differential equations, Hamiltonian systems are introduced, leading up to the frontiers of current research: thus the reader can start to work on open research problems, after studying this book. This new edition contains an extensive analysis of fractal sets with dynamical aspects like the correlation- and information dimension. In Hamiltonian systems, topics like Birkhoff normal forms and the Poincaré-Birkhoff theorem on periodic solutions have been added. There are now 6 appendices with new material on invariant manifolds, bifurcation of strongly nonlinear self-excited systems and normal forms of Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, and is illustrated by many examples.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia